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Abstract 
The locality condition of probabilities underpinning the derivation of Bell inequalities can be violated classically. The wave 
function collapse of an entangled state of single photons results in the factorization of quantum probabilities. It is possible 
to differentiate, locally, between ensemble probabilities of single detections with and without wave function collapse 
for the alleged quantum nonlocality. The theoretical concept of photonic quantum nonlocality cannot be implemented 
physically because of the quantum Rayleigh scattering of single photons. A distinction needs to be made between the 
correlation of individual, single measurements of pure states and the correlation of the measurement ensemble of the 
mixed states. The correlation operator of Pauli vector operators delivers the same probabilities of correlated detections 
of photons for both independent and multi-photon states as for ‘entangled’ states of photons. As single-photon sources 
are not needed, the design and implementation of quantum computing operations and other devices will be significantly 
streamlined. © 2024 The Author.

Fibre-Optic Transmission of Canberra, Australia 

Keywords
Quantum Rayleigh Scattering, Correlation of Polarization States and Quantum Nonlocality

Volume 1, Issue 1

Research Article

Date of Submission: 22 January, 2025
Date of Acceptance: 18 February, 2025
Date of Publication: 24 February, 2025

Int J Quantum Technol, 2025 01

Introduction 
Recent background briefing articles [1, 2] reveal significant difficulties in the implementation of practical quantum 
computers based on the concepts of entangled states and quantum nonlocality related correlations of detected single 
photons despite heavy resources having been invested in the last two decades [3, 4]. This is not surprising given the 
omissions of quantum physical processes and many physical contradictions that have been allowed to persist in the 
professional literature of leading journals. 

Quantum correlations are identified through a product of operators [3, 4]. In the case of polarization states, these 
operators correspond to the Pauli spin vectors for 2 x 2 detections between two orthogonal channels at each location. 
The benchmark for quantum correlations takes the form of Bell-inequalities which should be violated only by quantum 
probabilities calculated as the expectation values of a product of operators in the context of wavefunctions describing, 
e.g., polarization-entangled single photons [3, 4].

The effect of quantum nonlocality is meant to synchronize the detections recorded at the two locations A and B for 
polarization-entangled states of photons. In the caption to Fig. 1 of ref. [5] of, one reads: “…if both polarizers are 
aligned along the same direction (a=b), then the results of A and B will be either (+1; +1) or (-1; -1) but never (+1; 
-1) or (-1; +1.); this is a total correlation as can be determined by measuring the four rates with the fourfold detection 
circuit [5].” Yet, the quantum correlation is supposed to take place at the level of each pair of entangled photons rather 
than between averaged values, or rates, of the two distributions; but such an outcome has never been reported. The 
maximal, experimentally measured probability of coincident counts reported in the landmark experiments of refs. is 
2x10-4 (or 0.0002) which was achieved with highly non-entangled states and raising doubts about the existence of Bohr’s 
nonlocality [6, 7]. 
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 Figure 1.  Schematic of one photon being randomly scattered inside a dielectric medium,  

while a group of identical photons propagates in a straight-line. 
 
 

values [4; p. 422] of 〈𝑎𝑎𝑥𝑥  𝑏𝑏𝑦𝑦〉 = −�⃗�𝑥 ∙ �⃗�𝑦 , for detection settings  �⃗�𝑥0;1 ∥ �⃗�𝑦0;1, and  �⃗�𝑥0;1 ⊥ �⃗�𝑦 1;0 of the 
polarization states for coincident detections. Thus, 𝑆𝑆 = 0 , failing to violate the Clauser-Horne-
Shimony-Holt (CSHS) inequality despite involving the strongest quantum correlations.  This fact should 
have rung alarm bells about the irrelevance of the Bell-type inequalities as an indicator of strong 
correlations between the same order elements of two sequences. This shortcoming will be elaborated 
on in this article.    

From an experimental perspective, the correlation probability of simultaneous detections 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) between two binary-valued sequences is evaluated from a third sequential distribution 
𝑣𝑣𝐶𝐶(𝑎𝑎; 𝑏𝑏) calculated as the temporal vector or dot product of the two initial sequences 𝑣𝑣(𝑎𝑎, 𝑥𝑥) = {𝑎𝑎𝑚𝑚} 
and 𝑣𝑣(𝑏𝑏,𝑦𝑦) = {𝑏𝑏𝑚𝑚}  leading to   𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑚𝑚𝑁𝑁

𝑚𝑚=1  𝑏𝑏𝑚𝑚)/𝑁𝑁  where 𝑎𝑎, 𝑏𝑏 = 0 𝑜𝑜𝑜𝑜 1  are assigned 
binary values for no-detection or detection of an event, respectively.  For any two ensembles of 
measurements, the values of the correlation or joint probability  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏)  will depend on the 
sequential orders of the two separate ensembles at locations A and B, and can exceed the product of 
the local probabilities, i.e., of   𝑝𝑝𝑐𝑐(𝑎𝑎,𝑏𝑏) >  𝑝𝑝𝐴𝐴(𝑎𝑎)  𝑝𝑝𝐵𝐵( 𝑏𝑏) . Therefore, as the quantum formalism does 
not provide any information about those sequential orders, any artificial boundary such as Bell-
inequalities is physically meaningless, because for the same values of the local probabilities, 
 𝑝𝑝𝐴𝐴(𝑎𝑎) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑝𝑝𝐵𝐵( 𝑏𝑏), the higher values of   𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) will lead to a violation of the Bell inequality in the 
classical regime. Bell inequalities can be easily violated with independent photons [8-10]. 

Equally, the experimental results of ref. [11] alleging propagation of single photons through the 
atmosphere over a distance of more than 100 km are physically impossible because of the quantum 
Rayleigh scattering [12-13] of single photons which will prevent synchronized detections. A physically 
meaningful explanation was presented in refs. [14-15] and can be summarized as follows. The 
spontaneously emitted photons in the nonlinear crystal undergo parametric amplification forming a 
group of identical photons. This group of photons can overcome the quantum Rayleigh scattering 
through quantum Rayleigh stimulated emission. This is illustrated in Figure 1 of this article and detailed 
in refs. [14-15]. 

Additionally, a sub-section of ref. [4] headlined “More nonlocality with less entanglement” leads 
one to the anomaly of nonlocality. “Astonishingly, it turns out that in certain cases, and depending on 
which measure of nonlocality is adopted, less entanglement can lead to more nonlocality.” [4; p. 442].  
“Remarkably, it turns out that this threshold efficiency can be lowered by considering partially 
entangled states. ….This astonishing result was the first demonstration that sometimes less 
entanglement leads to more nonlocality “ [4; p. 464]. 

“Since it is expressed in terms of the probabilities for the possible measurement outcomes in an 
experiment, a Bell inequality is formally a constraint on the expected or average behavior of a local 
model. In an actual experimental test, however, the Bell expression is estimated only from a finite set 
of data and one must take into account the possibility of statistical deviations from the average 
behaviour” [4, p. 466]. For a distinction between probability and frequency of occurrence, the reader 
is directed to ref. [16] 

χ(1)
 
 

Figure 1: Schematic of One Photon Being Randomly Scattered Inside a Dielectric Medium, while a Group 
of Identical Photons Propagates in a Straight-Line
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higher values of 𝑝𝑐(𝑎,𝑏) will lead to a violation of the Bell inequality in the classical regime. Bell inequalities can be easily 
violated with independent photons [8-10].

Equally, the experimental results of ref. [11], alleging propagation of single photons through the atmosphere over a 
distance of more than 100 km are physically impossible because of the quantum Rayleigh scattering of single 
photons which will prevent synchronized detections [12-13]. A physically meaningful explanation was presented in 
refs [14-15]. and can be summarized as follows [14, 15]. The spontaneously emitted photons in the nonlinear crystal 
undergo parametric amplification forming a group of identical photons. This group of photons can overcome the 
quantum Rayleigh scattering through quantum Rayleigh stimulated emission. This is illustrated in Figure 1 of this article 
and detailed in refs [14, 15].

Additionally, a sub-section of ref. [4] headlined “More nonlocality with less entanglement” leads one to the anomaly of 
nonlocality. “Astonishingly, it turns out that in certain cases, and depending on which measure of nonlocality is adopted, 
less entanglement can lead to more nonlocality.” [4; p. 442]. “Remarkably, it turns out that this threshold efficiency 
can be lowered by considering partially entangled states. …. This astonishing result was the first demonstration that 
sometimes less entanglement leads to more nonlocality “[4; p. 464].

“Since it is expressed in terms of the probabilities for the possible measurement outcomes in an experiment, a Bell 
inequality is formally a constraint on the expected or average behavior of a local model. In an actual experimental 
test, however, the Bell expression is estimated only from a finite set of data and one must consider the possibility of 
statistical deviations from the average behavior” [4, p. 466]. For a distinction between probability and frequency of 
occurrence, the reader is directed to ref [16]. Experiments designed to close loopholes linked to hidden variables are 
based on statistical considerations of Bell inequalities. But these inequalities ignore loopholes arising from physical 
interactions such as the quantum Rayleigh scattering of single photons and the polarization correlations between 
Stokes vectors. Such physical contradictions and inconsistencies are outlined in Section 2 of this article in relation to 
local measurements of polarization entangled photons. In Section 3, a distinction is made between the correlation of 
coincident detections of photons and the correlation between ensembles of measurements, as well as pointing out the 
flaws of the Bell inequalities. Section 4 scrutinizes landmark experiments in view of the analytic results of the previous 
sections, explaining the failure to develop practical quantum computers and putting forward practical ways of processing 
data states on the Poincare sphere [6, 7]. Physical aspects of the possibility to achieve quantum-strong correlations 
with independent, multi-photon states facilitating qubit rotations will be discussed in Section 5, and final conclusions 
are listed in Section 6.

Additionally, the Bell parameter 𝑆 = 〈𝑎0 𝑏0〉 + 〈𝑎0 𝑏1〉 + 〈𝑎1 𝑏0〉 − 〈𝑎1 𝑏1〉 of Eq in would actually vanish as 〈𝑎1 𝑏1〉 = 〈𝑎0 𝑏0〉 = −1 
and 〈𝑎1 𝑏0〉 = 〈𝑎0 𝑏1〉 = 0  according to the expectation [4].
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Physically Meaningful Wavefunctions 
A series of contradictions and inconsistencies can be identified in the theory and experiments involving the concept of 
quantum nonlocality: 
A indentation Quantum Rayleigh scattering prevents a straight-line propagation of a single photon, thereby ruling out 
coincident detections of the original pair of photons [12, 13].
• Independent photons produce quantum-strong correlations of detected polarization states [8, 9].
• Polarimetric, local measurements of a maximally entangled photon result in a zero-expectation value [10]. For a 

local measurement of the Pauli operators 𝜎�̂�, in the context of a Bell state |ψ𝐴𝐵⟩, the expectation values vanish, i.e., 
⟨ψ𝐴𝐵 | 𝜎�̂� ⨂ 𝐼𝐵 |ψ𝐴𝐵⟩ = 0 , (𝐼𝐵 being the identity operator) delivering no information for a comparison between the two 
pair ensembles at locations A and B.

• Experimental results alleging evidence of quantum nonlocality are obtained with low levels of entanglement instead 
of maximally entangled states [6, 7].

• The quantum nonlocality is meant to operate between the two pair-photons but Bell inequalities deal with the 
correlation between ensemble averages [3, 4].

• The wavefunction collapse upon the first measurement reduces the entangled state to a product state, with the 
probability of projective rotation of the polarization state being identical to that of an independent state.

These contradictions and inconsistencies are addressed in this article in the context of the following guidelines:
• Reproducibility of experimental results is a basic principle of scientific methodology. Any apparent correlation 

between two measurements carried out with identical physical systems and under identical conditions is bound 
to produce identical distributions of outcomes, whether quantum or classical. Therefore, for any quantum effect 
of nonlocality between two single and entangled photons to be identified, the symmetry correlation needs to be 
removed from the picture.

• The concept of wave function collapse involving an entangled state of photons upon a first measurement is analyzed 
based on the von Neumann’s projection postulate [3; eq. (C28)].

• A second type of wave function collapse in the case of an entangled state composed of two product terms will lead, 
upon collapse through measurement, to only one product term, which actually eliminates the entanglement before 
the second measurement.

• Each of the two separate detectors has only one setting or channel open for receiving the incoming photon. This 
configuration will remove the mix-up between two-channel detectors, i.e. 1 x 1 correlation as opposed to 2 x 2 
correlations for Pauli operators. 

Factorizing Quantum Probabilities Associated with Entangled States 
It is claimed [3; p.583] that “… the probability distribution defined by an entangled state does not satisfy the principle 
of statistical separability, even when the parts are far apart in space.” This statement is contradicted by the formalism 
of the wave function collapse, or reduction, upon a first measurement at location A, which is followed by a second one 
at location B, as analyzed in [17] and expanded in this subsection.

If the optical source emits a time-dependent stream of polarized pair-photons, only one term of the entangled state, 
e.g., either (|𝐻𝐴⟩ |𝐻𝐵⟩ or |𝑉𝐴⟩ |𝑉𝐵⟩ will be present at any given time for an individual measurement but not both. This 
physical reality is disregarded by the mixed quantum state, but is reintroduced through the wave function collapse, 
breaking up the “entanglement” between the two photons and bringing a time-dependence into the process of individual 
measurements analogous to the time-resolved detection of single photons [17].

A different approach would be to evaluate the probability of detection at location B in two possible circumstances: 
1) No detection takes place at location A, so that the projective measurement at location B involves the operator Π̂(𝛽)
= |𝐻𝛽⟩ ⟨𝐻𝛽| acting on the initial state

̂ ̂
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after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽. An identical result is obtained for the first 
detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

2.  A first detection takes place at location A involving the projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, 
which results in the intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ =
𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed wave function |𝜓𝜓𝐵𝐵|𝐴𝐴⟩ becomes: 
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√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐵𝐵⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐵𝐵⟩) |𝐻𝐻𝛼𝛼⟩                      (3) 

|𝜓𝜓𝐵𝐵⟩ =
|𝜓𝜓𝐵𝐵|𝐴𝐴⟩
√ℕ

 = |𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐵𝐵| 𝜓𝜓𝐴𝐴𝐵𝐵⟩
√ℕ

                                                                               (4) 

where |𝜓𝜓𝐵𝐵⟩ denotes the normalised wave function for the calculation of the detection probability at 
location B, conditional on a detection at location A. The normalization factor ℕ = 1/2  for the 
collapsed wave function |𝜓𝜓𝐵𝐵|𝐴𝐴⟩  corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐵𝐵⟩ from Eq (4) we have: 

𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐵𝐵|𝐼𝐼𝐵𝐵⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐵𝐵|𝜓𝜓𝐴𝐴𝐵𝐵⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐵𝐵⟩|2 = ℕ ⟨𝜓𝜓𝐵𝐵|𝜓𝜓𝐵𝐵⟩ = 1/2                              (5) 

Based on the normalized state |𝜓𝜓𝐵𝐵⟩, the probability of detection at location B following a detection 
at location A becomes in this case, for a projective measurement: 

𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐵𝐵|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐵𝐵⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2 =  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                      (6) 

This result which can be found in [3; Sec.19.5] implies that for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values 
of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼 , the local probability of detection could peak at unity. This theoretical outcome is easily 
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 for the first measurement, and after substituting for |𝜓𝐵⟩ from Eq (4) we have:

Based on the normalized state |𝜓𝐵⟩, the probability of detection at location B following a detection at location A becomes 
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This result which can be found in [3; Sec.19.5] implies that for 𝛽 − 𝛼 = ±𝜋/2, regardless of the values of 𝛽 𝑜𝑟 𝛼, the local 
probability of detection could peak at unity. This theoretical outcome is easily testable experimentally for direct evidence 
of a quantum nonlocal effect influencing the second measurement after the wave function collapse. But this has never 
been done either because of the quantum Rayleigh scattering of a single-photon and/or the non-existence of such a 
nonlocal effect. The product of the local probabilities of Eqs. (2) and (6) equals the expression of the joint probability 
𝑃𝛼𝛽 for simultaneous detections at both locations A and B, that is:
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𝑃𝑃𝛼𝛼𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐻𝐻𝛼𝛼⟩|𝐻𝐻𝛼𝛼⟩⨂⟨𝐻𝐻𝛼𝛼|⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 0.5  𝑠𝑠𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                                                (7𝑏𝑏)  

𝑃𝑃𝛼𝛼𝛼𝛼 =  𝑃𝑃𝛼𝛼  𝑃𝑃𝛼𝛼|𝛼𝛼  ≤ 𝑃𝑃𝛼𝛼  𝑃𝑃𝛼𝛼                                                                                                               (7𝑐𝑐) 

after inserting from Eqs. (4) and (5) in the equality (7a). The equality (7b) provides a direct calculation 
of the joint probability, confirming the validity of the derivation.  With the conditional probability of 
local detection 𝑃𝑃𝛼𝛼|𝛼𝛼 being, mathematically, lower than, or at best, equal to  the local probability of 
detection 𝑃𝑃𝛼𝛼 in the absence of a first detection, i.e., 𝑃𝑃𝛼𝛼|𝛼𝛼 ≤ 𝑃𝑃𝛼𝛼, the formalism of wave function collapse 
gives rise to a factorization of local probabilities and imposes an upper bound on the quantum joint 
probability, in clear contradiction to the conventional assumption [3; p.538], [4]. This formalism 
delivers average values of the ensembles rather than correlation between the sequential orders of the 
detections, as explained in the Introduction section and Appendix A. The possibility of factorizing the 
quantum probability for joint events as in (7a) is identical to the classical case of joint probabilities 
with the second local probability being conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local condition of separability [3-4] irrelevant 
for the derivation of Bell inequalities.  

However, as local measurements at location B result in a difference between 𝑃𝑃𝛼𝛼 =1/2 and 
𝑃𝑃𝛼𝛼|𝛼𝛼 = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)  , experimental proof, or otherwise, of any quantum nonlocal effects can be 
verified by carrying out two ensembles of measurements, one with a prior detection at location A and 
the second one without such a detection. Additionally, by switching on and off the measurement at 
location A, a signal would be detected at location B between zero and non-zero probabilities, by simply 
coordinating the two filters’ angles to be equal 𝛽𝛽 = 𝛼𝛼 for the zero probability of joint detections. 

The use of a global quantum state which is time- and space-independent for the description of a 
time-dependent source output has led in many cases to physically impossible conclusions which were, 
nonetheless, taken as the “miracles” of quantum optics and quantum mechanics. In other words, even 
though information about the quantum system can be obtained from each individual measurement, 
the predictions of expected values of dynamic variables are based on global quantum states which 
discard a great deal of information.  

The analogous correlation function for independent photons evaluated through projective 
measurements is presented in Appendix B, to reveal the possibility of complete unity correlation 
between two one-setting detectors unlike Eqs. (7) which limit the correlation to a 0.5 value. 

 
2.2  System-descriptive wavefunctions for time-varying inputs 

Our quest for a physically meaningful wave function is based on the first paragraph of the review 
[18] which reads:  
“A quantum state is what one knows about a physical system. The known information is codified in a 
state vector  | 𝜓𝜓⟩, or in a density operator  �̂�𝜌, in a way that enables the observer to make the best 
possible statistical predictions about any future interactions (including measurements involving the 
system). [ 18, p. 299]. 

after inserting from Eqs. (4) and (5) in the equality (7a). The equality (7b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation. With the conditional probability of local detection 𝑃𝛽|𝛼 being, 
mathematically, lower than, or at best, equal to the local probability of detection 𝑃𝛽 in the absence of a first detection, 
i.e., 𝑃𝛽|𝛼 ≤ 𝑃𝛽, the formalism of wave function collapse gives rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear contradiction to the conventional assumption [3; p.538], [4]. 
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detections, as explained in the Introduction section and Appendix A. The possibility of factorizing the quantum probability 
for joint events as in (7a) is identical to the classical case of joint probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between the classical and quantum joint probabilities renders the 
local condition of separability [3-4] irrelevant for the derivation of Bell inequalities.

However, as local measurements at location B result in a difference between 𝑃𝛽 = 1/2 and 𝑃𝛽|𝛼=𝑠𝑖𝑛2(𝛽−𝛼) , experimental 
proof, or otherwise, of any quantum nonlocal effects can be verified by carrying out two ensembles of measurements, 
one with a prior detection at location A and the second one without such a detection. Additionally, by switching on and 
off the measurement at location A, a signal would be detected at location B between zero and non-zero probabilities, by 
simply coordinating the two filters’ angles to be equal 𝛽 = 𝛼 for the zero probability of joint detections.

The use of a global quantum state which is time- and space-independent for the description of a time-dependent source 
output has led in many cases to physically impossible conclusions which were, nonetheless, taken as the “miracles” 
of quantum optics and quantum mechanics. In other words, even though information about the quantum system can 
be obtained from each individual measurement, the predictions of expected values of dynamic variables are based on 
global quantum states which discard a great deal of information.

The analogous correlation function for independent photons evaluated through projective measurements is presented 
in Appendix B, to reveal the possibility of complete unity correlation between two one-setting detectors unlike Eqs. (7) 
which limit the correlation to a 0.5 value.

System-Descriptive Wavefunctions for Time-Varying Inputs 
Our quest for a physically meaningful wave function is based on the first paragraph of the review [18] which reads: “A 
quantum state is what one knows about a physical system [18]. The known information is codified 
in a state vector |𝜓⟩, or in a density operator 𝜌̂, in a way that enables the observer to make 
the best possible statistical predictions about any future interactions (including measurements 
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involving the system). [ 18, p. 299].

The maximally entangled state of |Φ𝐴𝐵⟩=(|𝐻𝐴⟩ |𝐻𝐵⟩ + |𝑉𝐴⟩ |𝑉𝐵⟩ )/√2 is time-independent corresponding to a mixed quantum 
state composed of two pure product states. For only one pair of photons being generated at any given time [6-7], [11] 
the time-dependent wavefunction |Φ𝐴𝐵 (𝑡)⟩ = 𝑐1 (𝑡) |𝐻𝐴⟩ |𝐻𝐵⟩ + 𝑐2 (𝑡) |𝑉𝐴⟩ |𝑉𝐵⟩ will result in two data sets being measured 
at different times, one for each product term, with 𝑐1 (𝑡) = 1 𝑎𝑛𝑑 𝑐2 (𝑡) = 0 or 𝑐1 (𝑡) = 0 𝑎𝑛𝑑 𝑐2 (𝑡) = 1, and the basis states 
|𝐻𝐴;𝐵⟩ 𝑎𝑛𝑑 |𝑉𝐴;𝐵⟩ being aligned with the x and y axes of the joint frame of coordinates in the measurement space.

The following paragraph is highly indicative of the shortcomings associated with an approach or formalism that 
deliberately overlooks physical elements and aspects of experimental setups. This paragraph reads [18]:

“In order to prepare a heralded photon, a parametric down-conversion (PDC) setup is pumped 
relatively weakly so it generates, on average, much less than a single photon pair per laser 
pulse (or the inverse PDC bandwidth). The two generated photons are separated into two emission 
channels according to their propagation direction, wavelength, and/or polarization. Detection 
of a photon in one of the emission channels (labelled trigger or idler) causes the state of the 
photon pair to collapse, projecting the quantum state in the remaining (signal) channel into a 
single-photon state.” [18, p. 311].

Experiments of correlated polarization states in the quantum regime would have one photon per radiation mode 
propagate in a straight-line in a dielectric medium in order to synchronize their detections. Yet, the quantum Rayleigh 
scattering [12-13] would prevent such a straight-line propagation, thereby making a synchronized detection impossible.

As derived and explained in [14-15], the parametric amplification is unavoidable and is accompanied by a phase-pulling 
effect which leads to the optimal condition for amplification. The alleged collapse of the state of the pair of photons, 
upon detection of one of them, into a single-photon state of the photon assumes that a single photon per radiation 
mode can propagate across a dielectric medium in a straight-line to the target photodetector. As explained previously 
[12-13], this assumption is ruled out by the existence of the quantum Rayleigh scattering in dielectric media such as 
optical fibres and beam splitters. But the parametrically amplified group of photons will propagate in a straight-line by 
recapturing an absorbed photon through the quantum Rayleigh stimulated emission [14-15]. Additionally, the formation 
in a beam splitter of groups of identical photons through quantum Rayleigh stimulated emission is presented in [14-15].

The Quantum Case of Time-Dependent Correlation Functions 
The conventional interpretation of coincident detections of a pair of polarization-entangled photons would have one 
photon each reach photodetectors A and B, spatially separated. But the two possible polarization states of each photon 
are mutually exclusive in time so that two data sets are probed separately at the level of each individual quantum event, 
with the statistical distribution of the mixed state describing the overall two ensembles of events. Thus, a physically 
meaningful wavefunction describing the two data sets will have a time dependence of only one pair of photons being 
present at any given time, e.g.: 
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The maximally entangled state of |Φ𝐴𝐴𝐴𝐴⟩ = (|𝐻𝐻𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩ +  |𝑉𝑉𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ )/√2  is time-independent 
corresponding to a mixed quantum state composed of two pure product states. For only one pair of 
photons being generated at any given time [6-7], [11] the time-dependent wavefunction  |Φ𝐴𝐴𝐴𝐴(𝑡𝑡)⟩ =
𝑐𝑐1(𝑡𝑡) |𝐻𝐻𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩ +  𝑐𝑐2(𝑡𝑡) |𝑉𝑉𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩  will result in two data sets being measured at different times, one for 
each product term, with 𝑐𝑐1(𝑡𝑡) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2(𝑡𝑡) = 0  or  𝑐𝑐1(𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2(𝑡𝑡) = 1 , and the basis states 
|𝐻𝐻𝐴𝐴;𝐴𝐴⟩ 𝑎𝑎𝑎𝑎𝑎𝑎  |𝑉𝑉𝐴𝐴;𝐴𝐴⟩  being aligned with the x and y axes of the joint frame of coordinates in the 
measurement space.  

The following paragraph is highly indicative of the shortcomings associated with an approach or 
formalism that deliberately overlooks physical elements and aspects of experimental setups. This 
paragraph reads [18]:  

“In order to prepare a heralded photon, a parametric down-conversion (PDC) setup is pumped 
relatively weakly so it generates, on average, much less than a single photon pair per laser pulse (or 
the inverse PDC bandwidth). The two generated photons are separated into two emission channels 
according to their propagation direction, wavelength, and/or polarization. Detection of a photon in 
one of the emission channels (labelled trigger or idler) causes the state of the photon pair to collapse, 
projecting the quantum state in the remaining (signal) channel into a single-photon state.”  [18, p. 
311]. 

Experiments of correlated polarization states in the quantum regime would have one photon per 
radiation mode propagate in a straight-line in a dielectric medium in order to synchronize their 
detections. Yet, the quantum Rayleigh scattering [12-13] would prevent such a straight-line 
propagation, thereby making a synchronized detection impossible. 

As derived and explained in [14-15], the parametric amplification is unavoidable and is 
accompanied by a phase-pulling effect which leads to the optimal condition for amplification. The 
alleged collapse of the state of the pair of photons, upon detection of one of them, into a single-
photon state of the photon assumes that a single photon per radiation mode can propagate across a 
dielectric medium in a straight-line to the target photodetector. As explained previously [12-13], this 
assumption is ruled out by the existence of the quantum Rayleigh scattering in dielectric media such 
as optical fibres and beam splitters.  But the parametrically amplified group of photons will propagate 
in a straight-line by recapturing an absorbed photon through the quantum Rayleigh stimulated 
emission [14-15]. Additionally, the formation in a beam splitter of groups of identical photons through 
quantum Rayleigh stimulated emission is presented in [14-15].  

2.3 The quantum case of time-dependent correlation functions 
The conventional interpretation of coincident detections of a pair of polarization-entangled 

photons would have one photon each reach photodetectors A and B, spatially separated. But the two 
possible polarization states of each photon are mutually exclusive in time so that two data sets are 
probed separately at the level of each individual quantum event, with the statistical distribution of the 
mixed state describing the overall two ensembles of events. Thus, a physically meaningful 
wavefunction describing the two data sets will have a time dependence of only one pair of photons 
being present at any given time, e.g.: 

|ψ𝐴𝐴𝐴𝐴(𝑡𝑡)⟩ =  𝑐𝑐1(𝑡𝑡) |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐2(𝑡𝑡)  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩                                                                    (8) 
   

where 𝑐𝑐1(𝑡𝑡) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2(𝑡𝑡) = 0  or 𝑐𝑐1(𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎  𝑐𝑐2(𝑡𝑡) = 1, and |𝐻𝐻𝐴𝐴⟩ 𝑎𝑎𝑎𝑎𝑎𝑎  |𝑉𝑉𝐴𝐴⟩ are aligned with the x 
and y axes of the joint frame of coordinates in the measurement space. The ensemble averages of the 
coefficients are: 𝑐𝑐1(𝑡𝑡) = 1/√2  𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2(𝑡𝑡) = 1/√2  resulting, mathematically, in a maximally entangled 
state for an ensemble of measurements.  

The common approach [3, Sec.19.5] would have the input photon absorbed through the 
annihilation operator �̂�𝑎 |𝐻𝐻 𝑜𝑜𝑜𝑜 𝑉𝑉⟩ = |0⟩ , followed by a rotation of the creation operator �̂�𝑎†(𝛼𝛼) =

where 𝑐1 (𝑡) = 1 𝑎𝑛𝑑 𝑐2 (𝑡) = 0 or 𝑐1 (𝑡) = 0 𝑎𝑛𝑑 𝑐2 (𝑡) = 1, and |𝐻𝐴⟩ 𝑎𝑛𝑑 |𝑉𝐵⟩ are aligned with the x and y axes of the joint frame 
of coordinates in the measurement space. The ensemble averages of the coefficients are: 𝑐1(𝑡)=1/√2 𝑎𝑛𝑑 𝑐2(𝑡)=1/√2 
resulting, mathematically, in a maximally entangled state for an ensemble of measurements.

The common approach [3, Sec.19.5] would have the input photon absorbed through the annihilation operator 
𝑎̂ |𝐻 𝑜𝑟 𝑉⟩=|0 ⟩, followed by a rotation of the creation operator 𝑎̂† (𝛼) = 𝑐𝑜𝑠𝛼 𝑎̂𝐻† + 𝑠𝑖𝑛𝛼 𝑎̂𝑉† and the appearance of the 
photon along the polarization filter’s orientation 𝑎̂†(𝛼) |0 ⟩=(𝑐𝑜𝑠 𝛼 + 𝑠𝑖𝑛 𝛼) |𝐻𝛼⟩ .

For one photon projected onto the filter state |𝐻𝛼⟩ at location A, the detection probability 𝑃𝑃𝐷(𝛼) of one photon at 
orientation angle 𝛼, following the collapse of the wave function upon the first sequential measurement, introduces a 
time dependence of the two mutually exclusive terms. For the sum of the two terms, the probability of photodetection 
at location A is:
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𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  �̂�𝑎𝐻𝐻† + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 �̂�𝑎𝑉𝑉†   and the appearance of the photon along the polarization filter’s orientation 
�̂�𝑎†(𝛼𝛼) |0⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼) |𝐻𝐻𝛼𝛼⟩ .  

For one photon projected onto the filter state |𝐻𝐻𝛼𝛼⟩ at location A, the detection probability 𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼) 
of one photon at orientation angle 𝛼𝛼 , following the collapse of the wave function upon the first 
sequential measurement, introduces a time dependence of the two mutually exclusive terms. For the 
sum of the two terms, the probability of photodetection at location A is: 

 
                      𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼, 𝑡𝑡) = (⟨𝜓𝜓𝐴𝐴𝐴𝐴(𝑡𝑡)| �̂�𝑎𝛼𝛼†)( �̂�𝑎𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴(𝑡𝑡)⟩ ) = 𝐴𝐴𝑃𝑃𝑃𝑃∗  𝐴𝐴𝑃𝑃𝑃𝑃 = |𝐴𝐴𝑃𝑃𝑃𝑃(𝛼𝛼, 𝑡𝑡)|2 = 

= |𝑐𝑐1(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼|2 + |𝑐𝑐2(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 |2                                                                             (9) 

And, similarly, for the location B: 
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽, 𝑡𝑡) = |𝑐𝑐1(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽|2 + |𝑐𝑐2(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 |2                                                                          (10) 

This time-dependence reproduces the time variation at the source output. Consequently, the 
entangled state plays no role in the detection processes of the two time-separated ensembles of 
measurements.  

For two simultaneous detections, one each at A and B, the probability 𝑃𝑃𝛼𝛼𝛼𝛼 of coincident detections 
takes the form: 

𝑃𝑃𝛼𝛼𝛼𝛼(𝑡𝑡) = ⟨ψ𝐴𝐴𝐴𝐴(𝑡𝑡)| �̂�𝑎𝛼𝛼†  �̂�𝑎𝛼𝛼
†  �̂�𝑎𝛼𝛼 �̂�𝑎𝛼𝛼|ψ𝐴𝐴𝐴𝐴(𝑡𝑡)⟩ = |𝑐𝑐1(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐2(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2       (11) 

The time-separation at the source is given by  𝑐𝑐1(𝑡𝑡) = 1 𝑎𝑎𝑠𝑠𝑎𝑎 𝑐𝑐2(𝑡𝑡) = 0  or 𝑐𝑐2(𝑡𝑡) = 0 𝑎𝑎𝑠𝑠𝑎𝑎  𝑐𝑐2(𝑡𝑡) = 1. This 
time-dependence is reproduced through the wavefunction collapse upon the first measurement. The 
first measurement returns a random detection, while the second measurement does not involve the 
original entangled state.   

Two data sets of measurements are recorded, one for each term of two photons in Eq (8), leading 
to the separate probabilities  𝑃𝑃𝛼𝛼𝛼𝛼;𝑗𝑗 =  |𝑐𝑐𝑗𝑗(𝑡𝑡)|2 𝑃𝑃𝛼𝛼;𝑗𝑗𝑃𝑃𝛼𝛼;𝑗𝑗 ( j =1 or 2). And the sum of probabilities obtained 
for the sum of the two data sets of pairs of photons becomes by combining Eqs. (9-11): 

𝑃𝑃𝛼𝛼𝛼𝛼 = 0.5 [𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽]                                                              (12) 

after setting for the statistical average of 𝑐𝑐𝑗𝑗(𝑡𝑡) = 1/√2  . As an example, we set 𝛼𝛼 = ±𝜋𝜋/4 𝑐𝑐𝑜𝑜 ± 3𝜋𝜋/4  
to obtain that 𝑃𝑃𝛼𝛼𝛼𝛼 = 1/4 for any value of 𝛽𝛽, including 𝛽𝛽 = 𝛼𝛼,  in contrast to Eq (7b). 

The two ensembles of detections do not overlap temporally, and their correlation is determined 
by the sequential orders of the ‘1’s and ‘0’s and can vary from one ensemble to another.  The physical 
absence of the interference term is brought about by the two temporally non-overlapping detections 
[17, Eq (9)]. The two data sets occur at different times and any correlation can only be mathematical. 

The correlation probability calculated for the entangled state  |ψ𝐴𝐴𝐴𝐴⟩ = (|𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2 is: 
 
𝑃𝑃𝛼𝛼𝛼𝛼 = ⟨ψ𝐴𝐴𝐴𝐴 | �̂�𝑎𝛼𝛼†  �̂�𝑎𝛼𝛼

†  �̂�𝑎𝛼𝛼 �̂�𝑎𝛼𝛼|ψ𝐴𝐴𝐴𝐴⟩ = 0.5 | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2 = 0.5 𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)       (13) 

which appears to indicate a physical correlation of measured ensembles; however, all states need to 
be populated simultaneously, which experimentally happens, as a result of the parametric 
amplification of the spontaneously emitted photons [14-15]. The number of photons simultaneously 
present in the system is much larger than two. 

The correlation between quantum mixed states of polarizations can also be obtained between 
classical states of polarization in the Jones representation. The correlation function 𝐶𝐶(𝛼𝛼;𝛽𝛽) is the 
overlap between two state vectors  𝒆𝒆𝛼𝛼 = cos𝛼𝛼 𝒙𝒙 + sin𝛼𝛼 𝒚𝒚    and   𝒆𝒆𝛼𝛼 = −sin𝛽𝛽 𝒙𝒙 + cos𝛽𝛽 𝒚𝒚    leading to 

And, similarly, for the location B:

https://www.primeopenaccess.com/international-journals/international-journal-of-quantum-technologies.asp


Int J Quantum Technol, 2025 06

7 
 

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  �̂�𝑎𝐻𝐻† + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 �̂�𝑎𝑉𝑉†   and the appearance of the photon along the polarization filter’s orientation 
�̂�𝑎†(𝛼𝛼) |0⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼) |𝐻𝐻𝛼𝛼⟩ .  

For one photon projected onto the filter state |𝐻𝐻𝛼𝛼⟩ at location A, the detection probability 𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼) 
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sum of the two terms, the probability of photodetection at location A is: 
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For two simultaneous detections, one each at A and B, the probability 𝑃𝑃𝛼𝛼𝛼𝛼 of coincident detections 
takes the form: 
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time-dependence is reproduced through the wavefunction collapse upon the first measurement. The 
first measurement returns a random detection, while the second measurement does not involve the 
original entangled state.   

Two data sets of measurements are recorded, one for each term of two photons in Eq (8), leading 
to the separate probabilities  𝑃𝑃𝛼𝛼𝛼𝛼;𝑗𝑗 =  |𝑐𝑐𝑗𝑗(𝑡𝑡)|2 𝑃𝑃𝛼𝛼;𝑗𝑗𝑃𝑃𝛼𝛼;𝑗𝑗 ( j =1 or 2). And the sum of probabilities obtained 
for the sum of the two data sets of pairs of photons becomes by combining Eqs. (9-11): 
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to the separate probabilities  𝑃𝑃𝛼𝛼𝛼𝛼;𝑗𝑗 =  |𝑐𝑐𝑗𝑗(𝑡𝑡)|2 𝑃𝑃𝛼𝛼;𝑗𝑗𝑃𝑃𝛼𝛼;𝑗𝑗 ( j =1 or 2). And the sum of probabilities obtained 
for the sum of the two data sets of pairs of photons becomes by combining Eqs. (9-11): 

𝑃𝑃𝛼𝛼𝛼𝛼 = 0.5 [𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽]                                                              (12) 

after setting for the statistical average of 𝑐𝑐𝑗𝑗(𝑡𝑡) = 1/√2  . As an example, we set 𝛼𝛼 = ±𝜋𝜋/4 𝑐𝑐𝑜𝑜 ± 3𝜋𝜋/4  
to obtain that 𝑃𝑃𝛼𝛼𝛼𝛼 = 1/4 for any value of 𝛽𝛽, including 𝛽𝛽 = 𝛼𝛼,  in contrast to Eq (7b). 

The two ensembles of detections do not overlap temporally, and their correlation is determined 
by the sequential orders of the ‘1’s and ‘0’s and can vary from one ensemble to another.  The physical 
absence of the interference term is brought about by the two temporally non-overlapping detections 
[17, Eq (9)]. The two data sets occur at different times and any correlation can only be mathematical. 

The correlation probability calculated for the entangled state  |ψ𝐴𝐴𝐴𝐴⟩ = (|𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2 is: 
 
𝑃𝑃𝛼𝛼𝛼𝛼 = ⟨ψ𝐴𝐴𝐴𝐴 | �̂�𝑎𝛼𝛼†  �̂�𝑎𝛼𝛼

†  �̂�𝑎𝛼𝛼 �̂�𝑎𝛼𝛼|ψ𝐴𝐴𝐴𝐴⟩ = 0.5 | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2 = 0.5 𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)       (13) 

which appears to indicate a physical correlation of measured ensembles; however, all states need to 
be populated simultaneously, which experimentally happens, as a result of the parametric 
amplification of the spontaneously emitted photons [14-15]. The number of photons simultaneously 
present in the system is much larger than two. 

The correlation between quantum mixed states of polarizations can also be obtained between 
classical states of polarization in the Jones representation. The correlation function 𝐶𝐶(𝛼𝛼;𝛽𝛽) is the 
overlap between two state vectors  𝒆𝒆𝛼𝛼 = cos𝛼𝛼 𝒙𝒙 + sin𝛼𝛼 𝒚𝒚    and   𝒆𝒆𝛼𝛼 = −sin𝛽𝛽 𝒙𝒙 + cos𝛽𝛽 𝒚𝒚    leading to 
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𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  �̂�𝑎𝐻𝐻† + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 �̂�𝑎𝑉𝑉†   and the appearance of the photon along the polarization filter’s orientation 
�̂�𝑎†(𝛼𝛼) |0⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼) |𝐻𝐻𝛼𝛼⟩ .  

For one photon projected onto the filter state |𝐻𝐻𝛼𝛼⟩ at location A, the detection probability 𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼) 
of one photon at orientation angle 𝛼𝛼 , following the collapse of the wave function upon the first 
sequential measurement, introduces a time dependence of the two mutually exclusive terms. For the 
sum of the two terms, the probability of photodetection at location A is: 

 
                      𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼, 𝑡𝑡) = (⟨𝜓𝜓𝐴𝐴𝐴𝐴(𝑡𝑡)| �̂�𝑎𝛼𝛼†)( �̂�𝑎𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴(𝑡𝑡)⟩ ) = 𝐴𝐴𝑃𝑃𝑃𝑃∗  𝐴𝐴𝑃𝑃𝑃𝑃 = |𝐴𝐴𝑃𝑃𝑃𝑃(𝛼𝛼, 𝑡𝑡)|2 = 

= |𝑐𝑐1(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼|2 + |𝑐𝑐2(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 |2                                                                             (9) 

And, similarly, for the location B: 
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽, 𝑡𝑡) = |𝑐𝑐1(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽|2 + |𝑐𝑐2(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 |2                                                                          (10) 

This time-dependence reproduces the time variation at the source output. Consequently, the 
entangled state plays no role in the detection processes of the two time-separated ensembles of 
measurements.  

For two simultaneous detections, one each at A and B, the probability 𝑃𝑃𝛼𝛼𝛼𝛼 of coincident detections 
takes the form: 

𝑃𝑃𝛼𝛼𝛼𝛼(𝑡𝑡) = ⟨ψ𝐴𝐴𝐴𝐴(𝑡𝑡)| �̂�𝑎𝛼𝛼†  �̂�𝑎𝛼𝛼
†  �̂�𝑎𝛼𝛼 �̂�𝑎𝛼𝛼|ψ𝐴𝐴𝐴𝐴(𝑡𝑡)⟩ = |𝑐𝑐1(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐2(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2       (11) 

The time-separation at the source is given by  𝑐𝑐1(𝑡𝑡) = 1 𝑎𝑎𝑠𝑠𝑎𝑎 𝑐𝑐2(𝑡𝑡) = 0  or 𝑐𝑐2(𝑡𝑡) = 0 𝑎𝑎𝑠𝑠𝑎𝑎  𝑐𝑐2(𝑡𝑡) = 1. This 
time-dependence is reproduced through the wavefunction collapse upon the first measurement. The 
first measurement returns a random detection, while the second measurement does not involve the 
original entangled state.   

Two data sets of measurements are recorded, one for each term of two photons in Eq (8), leading 
to the separate probabilities  𝑃𝑃𝛼𝛼𝛼𝛼;𝑗𝑗 =  |𝑐𝑐𝑗𝑗(𝑡𝑡)|2 𝑃𝑃𝛼𝛼;𝑗𝑗𝑃𝑃𝛼𝛼;𝑗𝑗 ( j =1 or 2). And the sum of probabilities obtained 
for the sum of the two data sets of pairs of photons becomes by combining Eqs. (9-11): 

𝑃𝑃𝛼𝛼𝛼𝛼 = 0.5 [𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽]                                                              (12) 

after setting for the statistical average of 𝑐𝑐𝑗𝑗(𝑡𝑡) = 1/√2  . As an example, we set 𝛼𝛼 = ±𝜋𝜋/4 𝑐𝑐𝑜𝑜 ± 3𝜋𝜋/4  
to obtain that 𝑃𝑃𝛼𝛼𝛼𝛼 = 1/4 for any value of 𝛽𝛽, including 𝛽𝛽 = 𝛼𝛼,  in contrast to Eq (7b). 

The two ensembles of detections do not overlap temporally, and their correlation is determined 
by the sequential orders of the ‘1’s and ‘0’s and can vary from one ensemble to another.  The physical 
absence of the interference term is brought about by the two temporally non-overlapping detections 
[17, Eq (9)]. The two data sets occur at different times and any correlation can only be mathematical. 

The correlation probability calculated for the entangled state  |ψ𝐴𝐴𝐴𝐴⟩ = (|𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2 is: 
 
𝑃𝑃𝛼𝛼𝛼𝛼 = ⟨ψ𝐴𝐴𝐴𝐴 | �̂�𝑎𝛼𝛼†  �̂�𝑎𝛼𝛼

†  �̂�𝑎𝛼𝛼 �̂�𝑎𝛼𝛼|ψ𝐴𝐴𝐴𝐴⟩ = 0.5 | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2 = 0.5 𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)       (13) 

which appears to indicate a physical correlation of measured ensembles; however, all states need to 
be populated simultaneously, which experimentally happens, as a result of the parametric 
amplification of the spontaneously emitted photons [14-15]. The number of photons simultaneously 
present in the system is much larger than two. 

The correlation between quantum mixed states of polarizations can also be obtained between 
classical states of polarization in the Jones representation. The correlation function 𝐶𝐶(𝛼𝛼;𝛽𝛽) is the 
overlap between two state vectors  𝒆𝒆𝛼𝛼 = cos𝛼𝛼 𝒙𝒙 + sin𝛼𝛼 𝒚𝒚    and   𝒆𝒆𝛼𝛼 = −sin𝛽𝛽 𝒙𝒙 + cos𝛽𝛽 𝒚𝒚    leading to 

This time-dependence reproduces the time variation at the source output. Consequently, the entangled state plays no 
role in the detection processes of the two time-separated ensembles of measurements.

For two simultaneous detections, one each at A and B, the probability 𝑃𝛼𝛽 of coincident detections takes the form: 

The time-separation at the source is given by 𝑐1 (𝑡) = 1 𝑎𝑛𝑑 𝑐2 (𝑡) = 0 or 𝑐2 (𝑡) = 0 𝑎𝑛𝑑 𝑐2 (𝑡) = 1. This time-dependence is 
reproduced through the wavefunction collapse upon the first measurement. The first measurement returns a random 
detection, while the second measurement does not involve the original entangled state.

Two data sets of measurements are recorded, one for each term of two photons in Eq (8), leading to the separate 
probabilities 𝑃𝛼𝛽;𝑗 = |𝑐𝑗 (𝑡)|2 𝑃𝛼;𝑗 𝑃𝛽;𝑗  ( j =1 or 2). And the sum of probabilities obtained for the sum of the two data sets of 
pairs of photons becomes by combining Eqs. (9-11):

after setting for the statistical average of 𝑐𝑗 (𝑡) = 1/√2 . As an example, we set 𝛼 = ±𝜋/4  𝑜𝑟 ± 3𝜋/4   to obtain that 𝑃𝛼𝛽 = 
1/4 for any value of 𝛽, including 𝛽=𝛼, in contrast to Eq (7b).

The two ensembles of detections do not overlap temporally, and their correlation is determined by the sequential orders 
of the ‘1’s and ‘0’s and can vary from one ensemble to another. The physical absence of the interference term is brought 
about by the two temporally non-overlapping detections [17, Eq (9)]. The two data sets occur at different times and any 
correlation can only be mathematical.

The correlation probability calculated for the entangled state |ψ𝐴𝐵⟩ = (|𝐻𝐴⟩ |𝑉𝐵⟩ − |𝑉𝐴⟩ |𝐻𝐵⟩)/√2 is:

which appears to indicate a physical correlation of measured ensembles; however, all states need to be populated 
simultaneously, which experimentally happens, as a result of the parametric amplification of the spontaneously emitted 
photons [14-15]. The number of photons simultaneously present in the system is much larger than two.

The correlation between quantum mixed states of polarizations can also be obtained between classical states of 
polarization in the Jones representation. The correlation function 𝐶(𝛼;𝛽) is the overlap between two state vectors 𝒆𝛼 = cos 
𝛼 𝒙 + sin 𝛼 𝒚 and 𝒆𝛽 = −sin 𝛽 𝒙 + cos 𝛽𝒚  leading to 𝐶 (𝛼;𝛽)=|𝒆𝛼 ∙ 𝒆𝛽|2 = 𝑠𝑖𝑛2 (𝛼−𝛽) . This result is equivalent to the correlation 
of polarization states on the the Poincaré sphere [10].

Classical joint probabilities exceeding the product of local probabilities
As explained in the Introduction, a joint probability of coincident detections that is larger than the product of the two 
local probabilities, i.e., 𝑝𝐴𝐵 (1,1) >  𝑝𝐴 (1) 𝑝𝐵 (1) can be easily obtained with classical distributions of binary values of ‘1’ 
and ‘0’.

The derivation of Bell inequalities is based on the locality assumption [3-4], that is: “The joint probability distribution 
𝑝(𝑎,𝑏|𝑥,𝑦;𝜆) of obtaining outcomes a and b for measurements x and y, should factorize” [4] into:
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𝐶𝐶 (𝛼𝛼;𝛽𝛽) = |𝒆𝒆𝛼𝛼 ∙ 𝒆𝒆𝛽𝛽|
2 = 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝛼𝛼 − 𝛽𝛽) . This result is equivalent to the correlation of polarization states 

on the the Poincaré sphere [10].  
 

3. Classical joint probabilities exceeding the product of local probabilities 
As explained in the Introduction, a joint probability of coincident detections that is larger than the 

product of the two local probabilities, i.e., 𝑝𝑝𝐴𝐴𝐴𝐴  (1,1) > 𝑝𝑝𝐴𝐴 (1) 𝑝𝑝𝐴𝐴  (1)  can be easily obtained with 
classical distributions of binary values of ‘1’ and ‘0’. 

The derivation of Bell inequalities is based on the locality assumption [3-4], that is: “The joint 
probability distribution 𝑝𝑝(𝑎𝑎,𝑏𝑏|𝑥𝑥, 𝑦𝑦; 𝜆𝜆) of obtaining outcomes a and b for measurements x and y, should 
factorize” [4] into: 

𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦; 𝜆𝜆) =  𝑝𝑝(𝑎𝑎|𝑥𝑥; 𝜆𝜆) 𝑝𝑝(𝑏𝑏|𝑦𝑦; 𝜆𝜆)                                                                     (14) 

where for local statistics, the probabilities for outcomes a and b are 𝑝𝑝(𝑎𝑎|𝑥𝑥; 𝜆𝜆) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑝𝑝(𝑏𝑏|𝑦𝑦; 𝜆𝜆) , 
respectively. The variable 𝜆𝜆 is meant to provide a correlation between the two measurements as a 
result of some past event involving the two separated systems of photons. The equality of Eq (14) 
limits, arbitrarily or intentionally, the contribution of the ‘hidden variables’ in order to justify the 
argument that any larger value of 𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦; 𝜆𝜆) is due to the quantum effect of nonlocality. 

Mathematically, the derivation of Bell inequalities would have ‘hidden’ variables impact the 
statistical averages of simultaneous measurements. It is stated in [4; p.588] that: “In typical 
experiments, the complete specification of the state represented by λ is not available— for example, 
the values of the hidden variables cannot be determined—so the strong separability condition must 
be averaged over a distribution ρ(λ) that represents the experimental information that is available.”  
Additionally, “…the condition for statistical independence” [4; p. 588] is: 

 
𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝛼𝛼,𝛽𝛽) =  𝑝𝑝(𝑎𝑎|𝛼𝛼) 𝑝𝑝(𝑏𝑏|𝛽𝛽)                                                                                (15) 

 “For the typical situation in which the complete state λ is not known, the Bell parameter S (λ) 
should be replaced by the experimentally relevant quantity 𝑆𝑆 ≡  𝐸𝐸(𝛼𝛼1,𝛽𝛽1) +  𝐸𝐸(𝛼𝛼1,𝛽𝛽2) +  𝐸𝐸(𝛼𝛼2,𝛽𝛽1) −
 𝐸𝐸(𝛼𝛼2,𝛽𝛽2)  “ [4, p. 589] which leads to the  Clauser-Horne-Shimony-Holt inequality.  However, as 
pointed out in the Introduction, the CHSH inequality does not capture the presence of maximally 
entangled states, for which purpose it was derived, subject to the limitation of Eq (14). Further 
shortcomings of Bell inequalities can be found in Appendix A. 

The Clauser- Horne inequality used in [6-7] involves only joint probabilities of outcomes, and is 
written for further consideration as:  

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) −  𝑝𝑝 (1,1;𝛼𝛼′,  𝛽𝛽′) ≤  𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) + 𝑝𝑝 (0,1;𝛼𝛼′,𝛽𝛽)                        (16) 
 
But, with only two photons present at any given time, this inequality requires four different ensembles 
of measurements for the four pairs of settings which are probed at separate times. By contrast, the 
quantum nonlocality is supposed to act at the level of each pair of photons [5].  In Eq (16), e.g.,   
𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) stands for a detection at location A for setting 𝛼𝛼  and no detection at location B for 
setting 𝛽𝛽′. However, the inequality (16) cannot be violated even with optimal conditions because of 
the opposite requirements for the difference and sum of probabilities as explained in the next 
paragraph. 

With identical devices and settings, the quantum effect of nonlocality should maximize the joint 
probabilities on the left-hand side of Eq (16) and minimize the probabilities on its right-hand side.  For 
example, with 𝛼𝛼 = 𝛽𝛽, the probabilities are set equal 𝑝𝑝(1|𝛼𝛼) =  𝑝𝑝(1|𝛽𝛽) = 0.8 and 𝑝𝑝(1|𝛼𝛼′) = 𝑝𝑝(1|𝛽𝛽′) =
0.2 , leading to maximal values of 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(1,1;𝛼𝛼,𝛽𝛽) = 0.8 and  𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  (1,1;𝛼𝛼′,  𝛽𝛽′) = 0.2 . On the right-hand 

where for local statistics, the probabilities for outcomes a and b are 𝑝(𝑎|𝑥;𝜆) 𝑎𝑛𝑑  𝑝(𝑏|𝑦;𝜆), respectively. The variable 
𝜆 is meant to provide a correlation between the two measurements as a result of some past event involving the two 
separated systems of photons. The equality of Eq (14) limits, arbitrarily or intentionally, the contribution of the ‘hidden 
variables’ in order to justify the argument that any larger value of 𝑝(𝑎,𝑏|𝑥,𝑦;𝜆) is due to the quantum effect of nonlocality.

Mathematically, the derivation of Bell inequalities would have ‘hidden’ variables impact the statistical averages of 
simultaneous measurements. It is stated in [3; p.588] that: “In typical experiments, the complete specification of the 
state represented by λ is not available— for example, the values of the hidden variables cannot be determined—so the 
strong separability condition must be averaged over a distribution ρ(λ) that represents the experimental information that 
is available.” Additionally, “…the condition for statistical independence” [3; p. 588] is:
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𝐶𝐶 (𝛼𝛼;𝛽𝛽) = |𝒆𝒆𝛼𝛼 ∙ 𝒆𝒆𝛽𝛽|
2 = 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝛼𝛼 − 𝛽𝛽) . This result is equivalent to the correlation of polarization states 

on the the Poincaré sphere [10].  
 

3. Classical joint probabilities exceeding the product of local probabilities 
As explained in the Introduction, a joint probability of coincident detections that is larger than the 

product of the two local probabilities, i.e., 𝑝𝑝𝐴𝐴𝐴𝐴  (1,1) > 𝑝𝑝𝐴𝐴 (1) 𝑝𝑝𝐴𝐴  (1)  can be easily obtained with 
classical distributions of binary values of ‘1’ and ‘0’. 

The derivation of Bell inequalities is based on the locality assumption [3-4], that is: “The joint 
probability distribution 𝑝𝑝(𝑎𝑎,𝑏𝑏|𝑥𝑥, 𝑦𝑦; 𝜆𝜆) of obtaining outcomes a and b for measurements x and y, should 
factorize” [4] into: 

𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦; 𝜆𝜆) =  𝑝𝑝(𝑎𝑎|𝑥𝑥; 𝜆𝜆) 𝑝𝑝(𝑏𝑏|𝑦𝑦; 𝜆𝜆)                                                                     (14) 

where for local statistics, the probabilities for outcomes a and b are 𝑝𝑝(𝑎𝑎|𝑥𝑥; 𝜆𝜆) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑝𝑝(𝑏𝑏|𝑦𝑦; 𝜆𝜆) , 
respectively. The variable 𝜆𝜆 is meant to provide a correlation between the two measurements as a 
result of some past event involving the two separated systems of photons. The equality of Eq (14) 
limits, arbitrarily or intentionally, the contribution of the ‘hidden variables’ in order to justify the 
argument that any larger value of 𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦; 𝜆𝜆) is due to the quantum effect of nonlocality. 

Mathematically, the derivation of Bell inequalities would have ‘hidden’ variables impact the 
statistical averages of simultaneous measurements. It is stated in [4; p.588] that: “In typical 
experiments, the complete specification of the state represented by λ is not available— for example, 
the values of the hidden variables cannot be determined—so the strong separability condition must 
be averaged over a distribution ρ(λ) that represents the experimental information that is available.”  
Additionally, “…the condition for statistical independence” [4; p. 588] is: 

 
𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝛼𝛼,𝛽𝛽) =  𝑝𝑝(𝑎𝑎|𝛼𝛼) 𝑝𝑝(𝑏𝑏|𝛽𝛽)                                                                                (15) 

 “For the typical situation in which the complete state λ is not known, the Bell parameter S (λ) 
should be replaced by the experimentally relevant quantity 𝑆𝑆 ≡  𝐸𝐸(𝛼𝛼1,𝛽𝛽1) +  𝐸𝐸(𝛼𝛼1,𝛽𝛽2) +  𝐸𝐸(𝛼𝛼2,𝛽𝛽1) −
 𝐸𝐸(𝛼𝛼2,𝛽𝛽2)  “ [4, p. 589] which leads to the  Clauser-Horne-Shimony-Holt inequality.  However, as 
pointed out in the Introduction, the CHSH inequality does not capture the presence of maximally 
entangled states, for which purpose it was derived, subject to the limitation of Eq (14). Further 
shortcomings of Bell inequalities can be found in Appendix A. 

The Clauser- Horne inequality used in [6-7] involves only joint probabilities of outcomes, and is 
written for further consideration as:  

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) −  𝑝𝑝 (1,1;𝛼𝛼′,  𝛽𝛽′) ≤  𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) + 𝑝𝑝 (0,1;𝛼𝛼′,𝛽𝛽)                        (16) 
 
But, with only two photons present at any given time, this inequality requires four different ensembles 
of measurements for the four pairs of settings which are probed at separate times. By contrast, the 
quantum nonlocality is supposed to act at the level of each pair of photons [5].  In Eq (16), e.g.,   
𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) stands for a detection at location A for setting 𝛼𝛼  and no detection at location B for 
setting 𝛽𝛽′. However, the inequality (16) cannot be violated even with optimal conditions because of 
the opposite requirements for the difference and sum of probabilities as explained in the next 
paragraph. 

With identical devices and settings, the quantum effect of nonlocality should maximize the joint 
probabilities on the left-hand side of Eq (16) and minimize the probabilities on its right-hand side.  For 
example, with 𝛼𝛼 = 𝛽𝛽, the probabilities are set equal 𝑝𝑝(1|𝛼𝛼) =  𝑝𝑝(1|𝛽𝛽) = 0.8 and 𝑝𝑝(1|𝛼𝛼′) = 𝑝𝑝(1|𝛽𝛽′) =
0.2 , leading to maximal values of 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(1,1;𝛼𝛼,𝛽𝛽) = 0.8 and  𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  (1,1;𝛼𝛼′,  𝛽𝛽′) = 0.2 . On the right-hand 
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But, with only two photons present at any given time, this inequality requires four different ensembles 
of measurements for the four pairs of settings which are probed at separate times. By contrast, the 
quantum nonlocality is supposed to act at the level of each pair of photons [5].  In Eq (16), e.g.,   
𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) stands for a detection at location A for setting 𝛼𝛼  and no detection at location B for 
setting 𝛽𝛽′. However, the inequality (16) cannot be violated even with optimal conditions because of 
the opposite requirements for the difference and sum of probabilities as explained in the next 
paragraph. 

With identical devices and settings, the quantum effect of nonlocality should maximize the joint 
probabilities on the left-hand side of Eq (16) and minimize the probabilities on its right-hand side.  For 
example, with 𝛼𝛼 = 𝛽𝛽, the probabilities are set equal 𝑝𝑝(1|𝛼𝛼) =  𝑝𝑝(1|𝛽𝛽) = 0.8 and 𝑝𝑝(1|𝛼𝛼′) = 𝑝𝑝(1|𝛽𝛽′) =
0.2 , leading to maximal values of 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(1,1;𝛼𝛼,𝛽𝛽) = 0.8 and  𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  (1,1;𝛼𝛼′,  𝛽𝛽′) = 0.2 . On the right-hand 

“For the typical situation in which the complete state λ is not known, the Bell parameter S (λ) should be replaced by the 
experimentally relevant quantity 𝑆 ≡ 𝐸 (𝛼1, 𝛽1) + 𝐸 (𝛼1, 𝛽2)+ 𝐸 (𝛼2, 𝛽1)− 𝐸 (𝛼2, 𝛽2) “ [3, p. 589] which leads to the Clauser-
Horne-Shimony-Holt inequality. However, as pointed out in the Introduction, the CHSH inequality does not capture the 
presence of maximally entangled states, for which purpose it was derived, subject to the limitation of Eq (14). Further 
shortcomings of Bell inequalities can be found in Appendix A.

The Clauser- Horne inequality used in [6-7] involves only joint probabilities of outcomes, and is written for further 
consideration as:

But, with only two photons present at any given time, this inequality requires four different ensembles of measurements 
for the four pairs of settings which are probed at separate times. By contrast, the quantum nonlocality is supposed to act 
at the level of each pair of photons [5]. In Eq (16), e.g., 𝑝 (1,0;𝛼, 𝛽′) stands for a detection at location A for setting 𝛼 and 
no detection at location B for setting 𝛽′. However, the inequality (16) cannot be violated even with optimal conditions 
because of the opposite requirements for the difference and sum of probabilities as explained in the next paragraph.

With identical devices and settings, the quantum effect of nonlocality should maximize the joint probabilities on the 
left-hand side of Eq (16) and minimize the probabilities on its right-hand side. For example, with 𝛼 = 𝛽, the probabilities 
are set equal 𝑝(1|𝛼)= 𝑝(1|𝛽)=0 .8 and 𝑝(1|𝛼′)=𝑝(1|𝛽′)=0 .2 , leading to maximal values of 𝑝𝑚𝑎𝑥 (1,1;𝛼,𝛽)=0.8 and 
𝑝𝑚𝑎𝑥 (1,1;𝛼′, 𝛽′)=0 .2 . On the right-hand side of Eq (16), minimal probability values for the detections of ‘1’s 
coinciding with ‘0’s are calculated by subtracting from the larger probability for ‘1’s the lower probability for ‘1’s, i.e., 
𝑝𝑚𝑖𝑛 (1,0 ;𝛼, 𝛽′)=𝑝 (1;𝛼)− 𝑝 (1;𝛽′)=0 .8 −0 .2=0 .6. Equally, 𝑝𝑚𝑖𝑛 (0 ,1;𝛼′,𝛽)=0 .6. Inserting these values into Eq (16), we have 0.8 
− 0.2 < 2 (0.8 − 0.2) = 1.2, which does not violate the CH inequality. Once again, as explained in the Introduction, the 
condition for the joint probability being the product of local probabilities as the criterion above which quantum effects 
are meant to occur is physically unsubstantiated, particularly so, in view of the product of local probabilities derived in 
Eqs. (7) and the experimental results of [8-9].

Experimentally, however, very low probabilities of detections are recorded because of the quantum Rayleigh scattering 
of single photons. The experimental violation of Eq (16) in [6-7] is possible because of the parametric amplification of 
the spontaneous emission in the original nonlinear crystal, so that the presence of multiple photons per radiation modes 
enhances the probability of coupling and detecting ‘1’s, which will be considered in the following sub-sections. Overall, 
the hidden variables of the Bell inequalities play no role in the derivation of the inequalities. Physically, ‘hidden’ variables 
should be included in the wave functions associated with physical processes and linked to the mechanisms, processes, 
effects, etc. that bring about those detected outcomes. In this context, time-varying inputs, averaged over fluctuating 
local conditions, lead to the existence of multi-photon wave fronts which are mistaken for single photons.

Physical factors reducing the correlations of coincident detections
For classical probabilities any hidden variable 𝜆 will be set aside, and the following ratio of classical probabilities can be 
obtained from Eq (14) with 𝑝 (𝑎,𝑏|𝑥,𝑦)= 𝑝(𝑏|𝑦)
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the criterion above which quantum effects are meant to occur is physically unsubstantiated, 
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Experimentally, however, very low probabilities of detections are recorded because of the 
quantum Rayleigh scattering of single photons. The experimental violation of Eq (16) in [6-7] is 
possible because of the parametric amplification of the spontaneous emission in the original nonlinear 
crystal, so that the presence of multiple photons per radiation modes enhances the probability of 
coupling and detecting ‘1’s, which will be considered in the following sub-sections 3.1-3.3.  

Overall, the hidden variables of the Bell inequalities play no role in the derivation of the inequalities. 
Physically, ‘hidden’ variables should be included in the wave functions associated with physical 
processes and linked to the mechanisms, processes, effects, etc. that bring about those detected 
outcomes. In this context, time-varying inputs, averaged over fluctuating local conditions, lead to the 
existence of multi-photon wave fronts which are mistaken for single photons. 

 
3.1 Physical factors reducing the correlations of coincident detections  

For classical probabilities any hidden variable 𝜆𝜆 will be set aside, and the following ratio of 
classical probabilities can be obtained from Eq (14) with 𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦) =  𝑝𝑝(𝑏𝑏|𝑦𝑦) 

 𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦)
 𝑝𝑝(𝑎𝑎|𝑥𝑥)  𝑝𝑝(𝑏𝑏|𝑦𝑦) = 1

 𝑝𝑝(𝑎𝑎|𝑥𝑥)  > 1                                                                  (17) 

This ratio can be larger than unity, indicating a stronger correlation between measurements than 
the locality condition of Eq (14) which was arbitrarily defined. This will happen for two series of 
individual binary outputs of ‘1’ and ‘0’, with all the detections ‘1’ of b coinciding with detections ‘1’ of 
a. For the same ensemble averages, the correlation value of the one-to-one same order component, 
may vary from zero to the minimum of the two probabilities. 

By contrast, for an input of multi-photon states, loss effects may not annihilate all the input 
photons, so that the number of detections increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) =
𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼 which provides a mathematical average. For a single-photon input, the density distribution per 
solid angle ∆Ω   of the mixed quantum state arising from spontaneous emission that follows the 
radiation pattern of an oscillating dipole is [19-20]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃  𝑑𝑑𝜃𝜃𝜋𝜋

−𝜋𝜋
                                                                           (18) 

 
where the solid angle of emission is ∆Ω , the polar angle between the electric dipole vector and the 
polarization vector of the emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane perpendicular 
to the dipole [19-20]. It is this distribution of the Rayleigh spontaneously emitted photons over the 
range {−𝜋𝜋,𝜋𝜋}, that randomly rotates the polarization state of the absorbed photons. 

Physically, however, one single photon is scattered randomly by quantum Rayleigh photon-dipole 
interactions. By contrast, a group of identical photons can propagate in a straight line inside a dielectric 
medium through quantum Rayleigh stimulated emission. This process of stimulated emission can also 
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may vary from zero to the minimum of the two probabilities. 
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where the solid angle of emission is ∆Ω , the polar angle between the electric dipole vector and the 
polarization vector of the emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane perpendicular 
to the dipole [19-20]. It is this distribution of the Rayleigh spontaneously emitted photons over the 
range {−𝜋𝜋,𝜋𝜋}, that randomly rotates the polarization state of the absorbed photons. 

Physically, however, one single photon is scattered randomly by quantum Rayleigh photon-dipole 
interactions. By contrast, a group of identical photons can propagate in a straight line inside a dielectric 
medium through quantum Rayleigh stimulated emission. This process of stimulated emission can also 

This ratio can be larger than unity, indicating a stronger correlation between measurements than the locality condition 
of Eq (14) which was arbitrarily defined. This will happen for two series of individual binary outputs of ‘1’ and ‘0’, with all 
the detections ‘1’ of b coinciding with detections ‘1’ of a. For the same ensemble averages, the correlation value of the 
one-to-one same order component, may vary from zero to the minimum of the two probabilities.

By contrast, for an input of multi-photon states, loss effects may not annihilate all the input photons, so that the number 
of detections increases regardless of the projective probability 𝑝 (𝛼) = 𝑐𝑜𝑠2 𝛼 which provides a mathematical average. For 
a single-photon input, the density distribution per solid angle ΔΩ of the mixed quantum state arising from spontaneous 
emission that follows the radiation pattern of an oscillating dipole is [19-20]:
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where the solid angle of emission is ΔΩ , the polar angle between the electric dipole vector and the polarization vector 
of the emitted photon is 𝜃, and 𝜑 is the azimuthal angle in the plane perpendicular to the dipole [19-20]. It is this 
distribution of the Rayleigh spontaneously emitted photons over the range {−𝜋,𝜋}, that randomly rotates the polarization 
state of the absorbed photons.

Physically, however, one single photon is scattered randomly by quantum Rayleigh photon-dipole interactions. By 
contrast, a group of identical photons can propagate in a straight line inside a dielectric medium through quantum 
Rayleigh stimulated emission. This process of stimulated emission can also amplify a spontaneously emitted photon with 
a rotated polarization, particularly so if the polarization modulator and analyser enable the propagation of a lossless 
mode [14-15].

Correlations of coincident detections of independent photons
A series or an ensemble of detection measurements is mathematically cast into a temporal vector 𝑣(𝛼,𝜃𝐴) along 
polarization output angle 𝛼, and for a polarization input setting 𝜃𝐴. The elements of the data vector are 𝑐𝑚 = 1 𝑜𝑟  0 for 
a detection event or no detection, respectively, of the m-th order element. Thus, 𝑣 (𝛼, 𝜃𝐴) has the following averaged 
number of ‘1’ terms summed over the probing times 𝛿(𝑡−𝑡𝑚), for one photon of polarization H or V in the measurement 
frame of coordinates:
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the rotation angle is:  𝜋𝜋/2 − 𝜃𝜃𝐴𝐴 and the probability of detection along 𝜃𝜃𝐴𝐴  is  𝑃𝑃𝑉𝑉(𝛼𝛼) = 𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼).  
The average number of ‘0’s is found from the expression:  𝑣𝑣0 (𝛼𝛼,𝜃𝜃𝐴𝐴) = 1 − 𝑣𝑣1 (𝛼𝛼, 𝜃𝜃𝐴𝐴) .   

The correlation vector 𝑣𝑣𝐶𝐶(𝛼𝛼;𝛽𝛽) of simultaneous detections between two arbitrary and random 
series 𝑣𝑣(𝛼𝛼)  and 𝑣𝑣(𝛽𝛽)  or ensembles, at locations A and B, respectively, is expressed as the product of 
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𝑁𝑁 ∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)

𝑁𝑁

𝑚𝑚=1
 𝑐𝑐𝑚𝑚(𝛽𝛽)                                        (20) 

 
By considering all possible combinations in Eq. (20), it is obvious that the order of the random 
distributions of the two sequences will determine the value of the joint probability of correlation 
𝑃𝑃(𝛼𝛼;𝛽𝛽) whose maximal value equals the lowest of the two local probabilities 𝑃𝑃(𝛼𝛼) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑃𝑃(𝛽𝛽). The 
values of 𝑃𝑃(𝛼𝛼;𝛽𝛽) may exceed the definition of the local condition for independent probabilities, i.e., 
𝑃𝑃(𝛼𝛼;𝛽𝛽) = 𝑃𝑃(𝛼𝛼) 𝑃𝑃(𝛽𝛽) where 𝑃𝑃(𝛼𝛼) = (∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)𝑁𝑁

𝑚𝑚=1  )/𝑁𝑁 and 𝑃𝑃(𝛽𝛽) = (∑ 𝑐𝑐𝑚𝑚(𝛽𝛽)𝑁𝑁
𝑚𝑚=1  )/𝑁𝑁. 

A distinction needs to be made between the probability of coincident events at the level of each 
individual event, and the product of probabilities of ‘1’s in each ensemble of measurements which is, 
in fact, the product of the averaged values of detections in the polarization states.   

From a physical perspective, identical systems operated in identical ways will yield identical 
distributions of outcomes, which is critical in the reproduction of experimental results. Given the low 
quantum efficiencies of ‘single-photon’ detections, the performance of correlated outputs can be 
significantly increased by launching, into the two systems, groups of identical photons as generated 
by the parametric amplification in the original crystal [10], [14-15], or externally controlled number of 
photons [8-9]. In such circumstances, the likelihood of a few photons reaching the output 
photodetectors simultaneously will be even larger than the probability of Eq. (20).  
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series 𝑣𝑣(𝛼𝛼)  and 𝑣𝑣(𝛽𝛽)  or ensembles, at locations A and B, respectively, is expressed as the product of 
the two m-th order terms, of simultaneous or coincident detections 𝑣𝑣𝐶𝐶(𝛼𝛼;𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) leading to 
an average 𝑣𝑣𝐶𝐶(𝛼𝛼;𝛽𝛽) of ’1’s or joint probability of simultaneous detections: 

𝑣𝑣𝐶𝐶(𝛼𝛼;𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) ⇒ 𝑃𝑃(𝛼𝛼;𝛽𝛽) = 1
𝑁𝑁 ∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)

𝑁𝑁

𝑚𝑚=1
 𝑐𝑐𝑚𝑚(𝛽𝛽)                                        (20) 

 
By considering all possible combinations in Eq. (20), it is obvious that the order of the random 
distributions of the two sequences will determine the value of the joint probability of correlation 
𝑃𝑃(𝛼𝛼;𝛽𝛽) whose maximal value equals the lowest of the two local probabilities 𝑃𝑃(𝛼𝛼) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑃𝑃(𝛽𝛽). The 
values of 𝑃𝑃(𝛼𝛼;𝛽𝛽) may exceed the definition of the local condition for independent probabilities, i.e., 
𝑃𝑃(𝛼𝛼;𝛽𝛽) = 𝑃𝑃(𝛼𝛼) 𝑃𝑃(𝛽𝛽) where 𝑃𝑃(𝛼𝛼) = (∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)𝑁𝑁

𝑚𝑚=1  )/𝑁𝑁 and 𝑃𝑃(𝛽𝛽) = (∑ 𝑐𝑐𝑚𝑚(𝛽𝛽)𝑁𝑁
𝑚𝑚=1  )/𝑁𝑁. 

A distinction needs to be made between the probability of coincident events at the level of each 
individual event, and the product of probabilities of ‘1’s in each ensemble of measurements which is, 
in fact, the product of the averaged values of detections in the polarization states.   

From a physical perspective, identical systems operated in identical ways will yield identical 
distributions of outcomes, which is critical in the reproduction of experimental results. Given the low 
quantum efficiencies of ‘single-photon’ detections, the performance of correlated outputs can be 
significantly increased by launching, into the two systems, groups of identical photons as generated 
by the parametric amplification in the original crystal [10], [14-15], or externally controlled number of 
photons [8-9]. In such circumstances, the likelihood of a few photons reaching the output 
photodetectors simultaneously will be even larger than the probability of Eq. (20).  

 
 

A distinction needs to be made between the probability of coincident events at the level of each individual event, and the 
product of probabilities of ‘1’s in each ensemble of measurements which is, in fact, the product of the averaged values 
of detections in the polarization states.

From a physical perspective, identical systems operated in identical ways will yield identical distributions of outcomes, 
which is critical in the reproduction of experimental results. Given the low quantum efficiencies of ‘single-photon’ 
detections, the performance of correlated outputs can be significantly increased by launching, into the two systems, 
groups of identical photons as generated by the parametric amplification in the original crystal [10], [14-15], or 
externally controlled number of photons [8-9]. In such circumstances, the likelihood of a few photons reaching the 
output photodetectors simultaneously will be even larger than the probability of Eq. (20).

Polarization-controlled correlated output of multi-photon states
With multiple photons propagating in both input orthogonal states of polarization H and V, one can control the output 
intensity through interference of the intrinsic fields of groups of identical photons coupled onto the filter’s polarization 
state of rotation angle 𝜃𝐴 . Following the results of [14-15] that identified dynamic and coherent number states 
|Ψn (𝜔,𝑡)⟩ = ( |n(𝑡)⟩+ |n(𝑡)−1⟩ )/√2, and recalling the non-Hermicity of the field operators [15], we find that 𝑎̂ |n ⟩=
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√𝑛 𝑒−𝑖 𝜑|n−1 ⟩ , which provides a complex field amplitude [15], for the time-dependent evolutions of photonic beam 
fronts. The output intensity, for fluctuating numbers of photons 𝑁𝑝ℎ (𝜃𝐴, 𝑡) and the expectation number 〈𝑁𝑝ℎ (𝜃𝐴,𝑡)〉 of the 
interference between pure states, take the forms:
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can control the output intensity through interference of the intrinsic fields of groups of identical 
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The output intensity, for fluctuating numbers of photons  𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) and the expectation number 
〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 of the interference between pure states, take the forms: 

 
𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) = 𝜂𝜂 0.5[ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃𝐴𝐴) +  𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑛𝑛2(𝜃𝜃𝐴𝐴) + 

 
+2 Γ(𝜏𝜏) √𝑁𝑁𝐻𝐻(𝑡𝑡)𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑛𝑛 ( 𝜃𝜃𝐴𝐴) 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜃𝜃𝐴𝐴) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))]                       (21) 

 
〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 = η 0.5 ⟨ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) [1 +  σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) Γ(𝜏𝜏)  𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] ⟩                                          (22) 

 
where σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑛𝑛 (2 𝜃𝜃𝐴𝐴)√ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑁𝑁𝑉𝑉(𝑡𝑡)/ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)  is the visibility with  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =
𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃𝐴𝐴) + 𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑛𝑛2(𝜃𝜃𝐴𝐴) ) , and Γ(𝜏𝜏) is the temporal overlap between the intrinsic optical 
fields of the photons whose derivation is available in [15]. The time-varying phases of the two 
polarization states are 𝜉𝜉𝐻𝐻 𝑎𝑎𝑛𝑛𝑎𝑎 𝜉𝜉𝑉𝑉, and the time-average is indicated by the angled brackets.  

By varying parameters in Eq (22), the lowest number of photons can become larger than zero, 
which increases the probability of detection. Overall, the more photons are trapped in the system 
through quantum Rayleigh spontaneous emission [14-15], the more likely it is for groups of identical 
photons to form through quantum Rayleigh stimulated emission. As a result, single photons coalesce 
into groups of multi-photon states, thereby changing the statistical outcomes.  
 
4. A scrutiny of landmark experiments 

The concept of quantum nonlocality emerged from the mathematical formalism of quantum 
mechanics, but its practical implementation in quantum optics needs to comply with the well-
established processes involving light-matter interactions. Yet, in order to push through the concept of 
photonic quantum nonlocality, various researchers chose to ignore the basics of optical physics, and, 
instead invoked statistical calculations which are contradicted by the physical reality, as demonstrated 
in the Introduction and Section 2 of this article.  

Significant physical contradictions have been overlooked in the opinion article by Aspect [5] hailing 
the results of refs. [6] and [7] as “definitive proof” of one measurement influencing remotely another 
measurement, bringing about the end of the Einstein-Bohr debate. However, in this Section a scrutiny 
of these landmark experiments [6-7] disproves the existence of photonic quantum nonlocality as its 
theory is riddled with physical contradictions and inconsistencies as outlined in Section 2 of this article. 

Experimental evidence of strong-quantum correlations obtained with non-entangled photons [8] 
were published in early 2020 but were overlooked because they did not fit the prevailing 
interpretation [5]. Equally, a growing body of analytic developments before and after 2015 have 
repeatedly demonstrated the statistical nature [21-26] of quantum nonlocality experiments. Recently, 
the quantum Rayleigh scattering of single photons [12] has been identified as a physical mechanism 
undermining the implementation of the concept of quantum nonlocality.  

where σ (𝑡, 𝜃𝐴) = 𝑠𝑖𝑛 (2 𝜃𝐴)√ 𝑁𝐻 (𝑡) 𝑁𝑉(𝑡)/ 𝑁𝑡𝑜𝑡(𝑡) is the visibility with 𝑁𝑡𝑜𝑡 (𝑡) = 𝑁𝐻 (𝑡) 𝑐𝑜𝑠2 (𝜃𝐴) + 𝑁𝑉 (𝑡) 𝑠𝑖𝑛2 (𝜃𝐴) ) , and Γ(𝜏) is 
the temporal overlap between the intrinsic optical fields of the photons whose derivation is available in [15]. The time-
varying phases of the two polarization states are 𝜉𝐻 𝑎𝑛𝑑 𝜉𝑉, and the time-average is indicated by the angled brackets.

By varying parameters in Eq (22), the lowest number of photons can become larger than zero, which increases the 
probability of detection. Overall, the more photons are trapped in the system through quantum Rayleigh spontaneous 
emission [14-15], the more likely it is for groups of identical photons to form through quantum Rayleigh stimulated 
emission. As a result, single photons coalesce into groups of multi-photon states, thereby changing the statistical 
outcomes.

A Scrutiny of Landmark Experiments 
The concept of quantum nonlocality emerged from the mathematical formalism of quantum mechanics, but its practical 
implementation in quantum optics needs to comply with the well-established processes involving light-matter interactions. 
Yet, in order to push through the concept of photonic quantum nonlocality, various researchers chose to ignore the 
basics of optical physics, and, instead invoked statistical calculations which are contradicted by the physical reality, as 
demonstrated in the Introduction and Section 2 of this article.

Significant physical contradictions have been overlooked in the opinion article by Aspect [5] hailing the results of refs 
[6-7] as a "definite proof" of one measurement influencing remotely another measurement, bringing about the end of 
the Einstein-Bohr debate. However, in this Section a scrutiny of these landmark experiments disproves the existence 
of photonic quantum nonlocality as its theory is riddled with physical contradictions and inconsistencies as outlined in 
Section 2 of this article [6, 7].

Experimental evidence of strong-quantum correlations obtained with non-entangled photons were published in early 
2020 but were overlooked because they did not fit the prevailing interpretation [5-7]. Equally, a growing body of 
analytic developments before and after 2015 have repeatedly demonstrated the statistical nature of quantum nonlocality 
experiments. Recently, the quantum Rayleigh scattering of single photons has been identified as a physical mechanism 
undermining the implementation of the concept of quantum nonlocality [12, 21-26]. The concept of quantum nonlocality 
was summarized by Aspect in the first paragraph of ref. [5] as "the idea that a measurement on one particle in an 
entangled pair could affect the state of the other— distant—particle [5].” The alleged physical effect was illustrated for 
the entangled state
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The concept of quantum nonlocality was summarized by Aspect in the first paragraph of ref. [5] as 
“the idea that a measurement on one particle in an entangled pair could affect the state of the other—
distant—particle.” The alleged physical effect was illustrated for the entangled state 

| ψ𝐴𝐴𝐴𝐴⟩ = (|𝑥𝑥⟩𝐴𝐴 |𝑥𝑥⟩𝐴𝐴 + |𝑦𝑦⟩𝐴𝐴 |𝑦𝑦⟩𝐴𝐴)/ √2                                                                       (23) 

of two polarized photons shown in the inset to Fig. 1 of [5] for which “quantum mechanics predicts 
that the polarization measurements performed at the two distant stations will be strongly correlated“.  
Another quotation of interest is: “In what are now known as Bell’s inequalities, he showed that, for 
any local realist formalism, there exist limits on the predicted correlations.” However, independent 
photons or multi-photon states also deliver quantum-strong correlation functions because the Pauli 
spin operators act on the polarization state regardless of the number of photons it carries. In this 
context, the overlap, in the measurement Hilbert space, between two polarization Stokes vectors 
measured separately at two distant locations generate the same correlation functions [8-10], thereby 
explaining the comparison of the experimental outcomes without invoking ‘quantum nonlocality’.   
 

4.1 The quantum Rayleigh scattering of single photons  
Although well-documented, e.g., [19-20] four decades ago, the physical process of quantum 

Rayleigh scattering has been consistently ignored in the conventional theory of quantum optics [3]. A 
single photon cannot propagate in a straight-line inside a dielectric medium because of the quantum 
Rayleigh scattering associated with photon-dipole interactions. Groups of photons are created 
through parametric amplification in the nonlinear crystal in which spontaneous emissions first occur, 
generating pair photons from a pump photon. Such a group of photons will maintain a straight line of 
propagation by recapturing an absorbed photon through stimulated Rayleigh emission [14-15]. The 
assumption that spontaneously emitted, parametrically down-converted individual photons cannot 
be amplified in the originating crystal because of a low level of pump power would, in fact, prevent 
any sustained emission in the direction of the phase-matching condition because of the Rayleigh 
spontaneous scattering [14-15]. As pointed out in Eq (18), the spatial distribution of the spontaneously 
emitted photons spans a broad solid angle, not only the direction of the phase-matching condition. 

Evidence of single-photon scattering can be found in ref. [7], in the Supplemental Material 
reporting that “In our experiment no photons are detected during a large number of trials, and these 
trials contribute little to the Bell violation.” Equally, the experiments of [7] “… employed single-photon 
optical time domain reflectometry (OTDR) to measure the transit time of light through all the optical 
fibers and some of the free-space optical paths in the experimental setup.” 

The probability of detecting a photon and its quantum effect is reported in Table S-II on page 16 
[7], to be less than 0.001%. This extremely low level of maximal detection probability is also reported 
in Fig. 3 of ref. [6]. It should be obvious that such extremely low probabilities cannot describe the 
presence of a physical phenomenon. Rather, these probabilities would indicate random statistical 
measurements which are consistent with the statistical explanation for measurements of correlated 
outputs [21-26].    

Physically, quantum entanglement of photonic states implies a strong correlation between the 
same properties of the same variable or degree of freedom measured separately on each of the two 
entangled photons. These properties are the consequence of a common past interaction between 
these photons and those properties generated in the common interaction can be carried away from 
the position and time of that interaction.  

Even recent experiments [27] using optically nonlinear crystals for parametric down-conversion of 
photons, report detection probabilities lower than 0.1%, pointing out that “The raw data are sifted” 
for a particular purpose. All these bring to the fore the unavoidable amplification of spontaneously 
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correlation functions because the Pauli spin operators act on the polarization state regardless of the number of photons 
it carries. In this context, the overlap, in the measurement Hilbert space, between two polarization Stokes vectors 
measured separately at two distant locations generate the same correlation functions thereby explaining the comparison 
of the experimental outcomes without invoking ‘quantum nonlocality’ [8-10].

The Quantum Rayleigh Scattering of Single Photons 
Although well-documented, e.g., four decades ago, the physical process of quantum Rayleigh scattering has been 
consistently ignored in the conventional theory of quantum optics [3, 19, 20]. A single photon cannot propagate 
in a straight-line inside a dielectric medium because of the quantum Rayleigh scattering associated with photon-
dipole interactions. Groups of photons are created through parametric amplification in the nonlinear crystal in which 
spontaneous emissions first occur, generating pair photons from a pump photon. Such a group of photons will maintain 
a straight line of propagation by recapturing an absorbed photon through stimulated Rayleigh emission [14, 15]. The 
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assumption that spontaneously emitted, parametrically down-converted individual photons cannot be amplified in the 
originating crystal because of a low level of pump power would, in fact, prevent any sustained emission in the direction 
of the phase-matching condition because of the Rayleigh spontaneous scattering [14, 15]. As pointed out in Eq (18), 
the spatial distribution of the spontaneously emitted photons spans a broad solid angle, not only the direction of the 
phase-matching condition.

Evidence of single-photon scattering can be found in ref [7]. In the Supplemental Material reporting that “In our 
experiment no photons are detected during a large number of trials, and these trials contribute little to the Bell 
violation.” Equally, the experiments “… employed single-photon optical time domain reflectometry (OTDR) to measure 
the transit time of light through all the optical fibers and some of the free-space optical paths in the experimental setup 
[7].” The probability of detecting a photon and its quantum effect is reported in Table S-II on page 16, to be less than 
0.001% [7]. This extremely low level of maximal detection probability is also reported in Fig. 3 of ref [6]. It should be 
obvious that such extremely low probabilities cannot describe the presence of a physical phenomenon. Rather, these 
probabilities would indicate random statistical measurements which are consistent with the statistical explanation for 
measurements of correlated outputs [21-26].

Physically, quantum entanglement of photonic states implies a strong correlation between the same properties of the 
same variable or degree of freedom measured separately on each of the two entangled photons. These properties are 
the consequence of a common past interaction between these photons and those properties generated in the common 
interaction can be carried away from the position and time of that interaction.

Even recent experiments using optically nonlinear crystals for parametric down-conversion of photons, report detection 
probabilities lower than 0.1%, pointing out that “The raw data are sifted” for a particular purpose [27]. All these bring 
to the fore the unavoidable amplification of spontaneously emitted photons [14, 15]. An indication of the existence of 
the quantum Rayleigh scattering can be seen from the extensive loss of photons that has been a constant feature of 
photon coincidence counting. For example, ref [27]. reports on page 3 of the Supplementary Information: “The success 
probability of the entanglement generation process, i.e. detection of a photon after an excitation pulse, equals 5.98 
×10−3 and 1.44 × 10−3 for Alice’s device and Bob’s device, respectively”. A typical percentage of lost photons is, at least, 
99.9% as mentioned independently. These very low values of successful detections are indicative of the photon-dipole 
interactions of absorption and re-emission given the Avogadro number of 6.022 × 1023 of atoms per mole.

The Absence of Quantum Nonlocality Upon Sequential Measurements 
The joint probability of detecting simultaneous photons depends on the random orders in the locally detected sequences, 
as explained in Section 3. Classical distributions of joint probabilities can easily exceed the value of their products as 
explained in the Introduction and Appendix A. A formalism based on wave function collapse – requiring a first detection 
followed by a second one – leads to the possibility of detecting locally the assumed existence of the quantum nonlocality 
effect, as described by Eqs. (7).

Quantum nonlocality is claimed to influence the measurement of the polarization state of one photon at location B, which 
is paired with another photon measured at location A. The two photons are said to be components of the same entangled 
state. Maximally entangled states, such as | ψ𝐴𝐵⟩ of Eq. (1), represented in the same frame of coordinates of horizontal 
(x) and vertical (y) polarizations, would deliver the strongest correlation values between separate measurements of 
polarization states recorded at the two locations A and B.

Nevertheless, the experimental results of refs [6,7]  reveal a low level of entanglement, with the reported mixed states 
having one component much larger than the other, thereby allowing for measurements of non-entangled product states. 
From equations (2) of both references, their experimental optimal ratios of the two amplitudes are 2.9 and 0.961/0.276, 
respectively, in [6, 7].

If a collapse of the wave function is to take place for entangled photons upon detection of a photon at either location, 
then the two separate measurements do not coincide. In this case, a polarimetric local measurement vanishes for 
the maximally entangled Bell states, e.g., ⟨ψ𝐴𝐵 | 𝜎̂ 𝐴 ⨂ 𝐼 𝐵 |ψ𝐴𝐵⟩=0 , with 𝐼 𝐵 =| 𝑥 ⟩⟨ 𝑥 |+|𝑦 ⟩⟨ 𝑦 | being the identity operator, 
and the projecting Pauli operators are in this case 𝜎̂1 = | 𝑥 ⟩⟨ 𝑦 |+|𝑦 ⟩⟨ 𝑥 | and 𝜎3̂ = | 𝑥 〉〈 𝑥 |−|𝑦 〉〈 𝑦 | . Thus, a physical 
contradiction arises as local experimental outcomes determine the mixed quantum state of polarization of the ensemble 
to be compared with its pair quantum state. As a matter of physical measurement, for the partially entangled state of 
| ψ𝐴𝐵,𝑎𝑏⟩ = 𝑎 |𝑥⟩𝐴 |𝑥⟩𝐵 + 𝑏 |𝑦⟩𝐴 |𝑦⟩𝐵), with |𝑎|2+ |𝑏|2 = 1, the local measurement will deliver ⟨ψ𝐴𝐵,𝑎𝑏 | 𝜎̂ 𝐴 ⨂ 𝐼 𝐵 |ψ𝐴𝐵,𝑎𝑏⟩=|𝑎|2−|𝑏|2 
indicating that the largest expectation value will be achieved with pure states, for either 𝑎=1 and 𝑏=0, or 𝑎=0 and 𝑏=1. 
Upon comparison of the two separately measured data sets, the strongest correlation will be detected for pure product 
states which are, in fact, obtained theoretically by invoking wavefunction collapse upon measurement.

This overlooked feature of maximally entangled Bell states renders them incompatible with the polarimetric measurements 
carried out to determine the state of polarization of photons, thereby explaining the experimental results of ref. [8-9] 
which were obtained with independent photons, indicating the possibility of obtaining quantum-strong correlations 
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without independent photons as pointed out in ref. [10]. The wave function collapse would bring about a product state 
as part of a time-dependent partial ensemble of measurements.

The mixed quantum state |ψ𝐴𝐵⟩ is space- and time-independent and considered to be a global state which can be used 
in any context, anywhere, and at any time. Nevertheless, the Hilbert spaces of the two photons move away from each 
other and do not overlap spatially, so that any composite Hilbert space is mathematically generated by means of a 
tensor product at a third location where the comparison of data is performed. Even so, the absence of a Hamiltonian of 
interaction renders any suggestion of a mutual influence, during the probing, physically impossible [21].

Correlation functions
Maximally entangled states, represented in the same frame of coordinates of horizontal and vertical polarizations, would 
deliver the strongest values of the correlation function for the Pauli spin vectors operators:
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for identical inputs to the two separate apparatuses, with the polarization filters rotated by an angle 𝜃𝐴 𝑜𝑟 𝜃𝐵 , 
respectively, from the horizontal axis. However, quantum-strong correlations with independent photons have been 
demonstrated experimentally [8-9] but ignored by legacy journals because they did not fit in with the theory of quantum 
nonlocality. The same correlation function 𝐸 𝑐 = 𝑐𝑜𝑠 [2 (𝜃𝐴 − 𝜃𝐵)] is obtained ‘classically’, as a result of the overlap of two 
polarization Stokes vectors of the polarization filters on the Poincaré sphere [10]. The Stokes parameters correspond to 
the expectation values of the Pauli spin operators [10].

The correlation function is a numerical calculation as opposed to a physical interaction. Thus, the numerical comparison 
of the data sets is carried out at a third location C where the reference system of coordinates is located for comparison 
or correlation calculations of the two sets of measured data, and does not require physical overlap of the observables 
whose operators are aligned with the system of coordinates of the measurement Hilbert space onto which the detected 
state vectors are mapped. In this case, the correlation operator 𝐶 = 𝜎̂ 𝐴 ⨂ 𝜎̂ 𝐵 can be reduced to [28; Eq. (A6)]:̂

where the polarization vectors 𝒂 and 𝒃 identify the orientation of the detecting polarization filters in the Stokes 
representation, and 𝜎̂=( 𝜎1̂, 𝜎2̂ , �̂�3 ) is the Pauli spin vector (with 𝜎2̂ = 𝑖 𝜎1̂ �̂�3). The presence of the identity operator in Eq. 
(25) implies that, when the last term vanishes for a linear polarization state, the correlation function is determined by 
the orientations of the polarization filters. This can be easily done with independent and linearly polarized states, such 
as:

where the index j= A or B identifies the photodetector. The same state reaches both detectors.

The polarization operator 𝜎̂ projects the incoming states onto the measurement Hilbert space for comparison of the two 
separate data sets. The polarization measurement operators of 𝜎̂(𝜃𝑗 ) = sin (2𝜃𝑗 ) 𝜎̂1 + 𝑐𝑜𝑠(2𝜃𝑗 ) 𝜎̂3 produce the output states

which, analogously to the overlapping inner product of two state vectors, lead to the correlation function of [10]:
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which, analogously to the overlapping inner product of two state vectors, lead to the correlation 
function of [10]: 

𝐸𝐸𝑐𝑐 =  ⟨Φ𝐴𝐴 | Φ𝐵𝐵⟩ =  𝑐𝑐𝑐𝑐𝑐𝑐 2 (𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵)                                                                        (28)          

The quantum correlation function of Eq. (28) between two independent states of polarized 
photons is equivalent to the overlap of their Stokes vectors on the joint Poincaré sphere of the 
measurement Hilbert space. Quantum-strong correlation are possible with independent states of 
photons [8-10] because the source of the correlation is the polarization states of the detecting filters 
or analyzers, making any claim of quantum nonlocality unnecessary. 

 
5. Physical aspects and discussion of physical processes 

At least three critical elements have been ignored in the interpretations of experimental results 
alleging proof of quantum nonlocality: 1) the quantum Rayleigh scattering involving photon-dipole 
interactions in a dielectric medium, which prevents a single photon from propagating in a straight-line, 
thereby obstructing the synchronized detections of initially paired-photons; 2) the unavoidable 
parametric amplification of the spontaneously emitted photons in the nonlinear crystal of the original 
source; and 3) the experimental evidence of quantum-strong correlations between polarization states 
or statistical ensembles of multi-photon, independent states.      

The existence of the quantum Rayleigh (QR) scattering was well documented back in the 1970s in 
textbooks [19-20] and its absence from the theory of Quantum Optics developed since the early 1980s 
is still a puzzling question. A possible answer would be that the “miracles” of quantum optics would 
have needed explaining by other physical means, requiring a multi-disciplinary approach. 

The concept of quantum nonlocality claims the existence of a strong correlation between 
measurements involving two entangled photons generated as a pair. The Bell inequalities impose a 
limit on the calculated correlation probabilities between ensembles of measurements involving an 
unlimited number of pairs of photons. But Bell inequalities can be experimentally violated with 
expectation values from independent and multi-photon states [8-9], because the correlations can also 
be generated classically [10] 

Equally, as explained in the Introduction and Appendix A, joint classical probabilities can exceed 
the value of their product.  There is no physical evidence of quantum non-locality for the simple reason 
that the Bell inequalities involve ensemble averages, whereas the quantum non-locality effect would 
act at the level of each qubit of photons or individual pairs of spatially separated, apparently entangled 
particles. As explained in Section 2, upon the first detection of an entangled pair of photons, the joint 
probability become factorized as the product of the two local probabilities, bringing about the 
possibility of local detection of an apparent quantum nonlocality. But such an experiment is yet to be 
carried out despite its simplicity.  

The theoretical concept of photonic quantum nonlocality cannot be implemented physically 
because of the quantum Rayleigh scattering of single photons. A physical scrutiny of landmark 
experiments [6-7] has been undertaken. These articles reported that measured outcomes were fitted 
with quantum states possessing a dominant component of non-entangled photons, thereby 
contradicting their own claim of quantum nonlocality. With probabilities of photon detections lower 
than 0.01 %, the alleged quantum nonlocality cannot be classified as a resource for developing 
quantum computing devices, despite recent publicity. Experimental evidence of a feasible process for 
quantum-strong correlations has been identified [8-9] in terms of correlations between independent 
and multi-photon states evaluated as Stokes vectors on the Poincaré sphere. As single-photon sources 
are not needed, the design and implementation of quantum computing operations and other devices 
will be significantly streamlined.   

The quantum correlation function of Eq. (28) between two independent states of polarized photons is equivalent to 
the overlap of their Stokes vectors on the joint Poincaré sphere of the measurement Hilbert space. Quantum-strong 
correlation are possible with independent states of photons because the source of the correlation is the polarization 
states of the detecting filters or analyzers, making any claim of quantum nonlocality unnecessary [8-10].

Physical Aspects and Discussion of Physical Processes 
At least three critical elements have been ignored in the interpretations of experimental results alleging proof of 
quantum nonlocality: 
• the quantum Rayleigh scattering involving photon-dipole interactions in a dielectric medium, which prevents a single 
photon from propagating in a straight-line, thereby obstructing the synchronized detections of initially paired-photons.
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• the unavoidable parametric amplification of the spontaneously emitted photons in the nonlinear crystal of the original 
source. 
• the experimental evidence of quantum-strong correlations between polarization states or statistical ensembles of 
multi-photon, independent states.
 
The existence of the quantum Rayleigh (QR) scattering was well documented back in the 1970s in textbooks and its 
absence from the theory of Quantum Optics developed since the early 1980s is still a puzzling question [19, 20]. A 
possible answer would be that the “miracles” of quantum optics would have needed explaining by other physical means, 
requiring a multi-disciplinary approach.

The concept of quantum nonlocality claims the existence of a strong correlation between measurements involving two 
entangled photons generated as a pair. The Bell inequalities impose a limit on the calculated correlation probabilities 
between ensembles of measurements involving an unlimited number of pairs of photons. But Bell inequalities can be 
experimentally violated with expectation values from independent and multi-photon states, because the correlations can 
also be generated classically [8-10]. Equally, as explained in the Introduction and Appendix A, joint classical probabilities 
can exceed the value of their product. There is no physical evidence of quantum non-locality for the simple reason that 
the Bell inequalities involve ensemble averages, whereas the quantum non-locality effect would act at the level of each 
qubit of photons or individual pairs of spatially separated, apparently entangled particles. upon the first detection of an 
entangled pair of photons, the joint probability become factorized as the product of the two local probabilities, bringing 
about the possibility of local detection of an apparent quantum nonlocality. But such an experiment is yet to be carried 
out despite its simplicity.

The theoretical concept of photonic quantum nonlocality cannot be implemented physically because of the quantum 
Rayleigh scattering of single photons. A physical scrutiny of landmark experiments has been undertaken. These articles 
reported that measured outcomes were fitted with quantum states possessing a dominant component of non-entangled 
photons, thereby contradicting their own claim of quantum nonlocality [6, 7]. With probabilities of photon detections 
lower than 0.01 %, the alleged quantum nonlocality cannot be classified as a resource for developing quantum computing 
devices, despite recent publicity. Experimental evidence of a feasible process for quantum-strong correlations has been 
identified in terms of correlations between independent and multi-photon states evaluated as Stokes vectors on the 
Poincaré sphere [8, 9]. As single-photon sources are not needed, the design and implementation of quantum computing 
operations and other devices will be significantly streamlined.

It is a common practice among the proponents of quantum nonlocality to ignore any physically meaningful interpretation 
of the relevant experiments. For example, a special issue on Quantum Nonlocality does not mention at all any articles 
which disprove the concept of quantum nonlocality [29]. Instead, rather contradictory statements were presented: “The 
quantum nonlocality also has an operational meaning for us, local observers, who can live only in a single world. Given 
entangled particles placed at a distance, a measurement on one of the particles instantaneously changes the quantum 
state of the other, from a density matrix to a pure state “. “What seems to be an unavoidable aspect of nonlocality of 
the quantum theory—which is present even in the framework of all worlds together—is entanglement. Measurement on 
one system does not change the state of the other system in the physical universe, but in each world created by the 
measurement, the state of the remote system is different. The entanglement, that is, the nonlocal connection between 
the outcomes of measurements shown to be unremovable using local hidden variables, is the ultimate nonlocality of 
quantum systems” [29]. Yet, all these statements have been proven to be unsubstantiated in the various Sections of 
this article, and in references, as well as experimentally [8, 9, 21-26].

 Equally, the popular promotion of research articles makes rather exaggerated claims such as: “The phenomenon of 
quantum nonlocality defies our everyday intuition [30]. It shows the strong correlations between several quantum 
particles some of which change their state instantaneously when the others are measured, regardless of the distance 
between them.” Such interpretations can be easily disproved [21-26]. This misinformation of refs [29, 30]. has not 
produced any quantum computer despite more than two decades of heavy investment as pointed out in refs [1, 2].

Conclusions 
This article identifies several physical omissions and contradictions which have been overlooked in the literature of 
photonic quantum nonlocality and which disprove the aspects or elements of quantum nonlocality. The propagation of 
single photons in a straight-line inside a dielectric medium is impossible because of the quantum Rayleigh scattering. 
The wave function collapse for entangled photons leads to a factorization of the quantum probability of joint detections 
for 1x1 correlation, which has been previously ignored. This will enable a local determination of the entangled state and 
the alleged quantum nonlocality, if its existence is to be proved or disproved.

Equally, the function reduction upon a first measurement, as required for a quantum ‘nonlocal’ interaction, leads to a 
vanishing expectation value for the Pauli operators in the context of a Bell-state, i.e., maximally entangled photons. The 
strong correlation functions can also be obtained with independent states of photons obviating the need for entangled 
photons. Overall, the locality condition underpinning Bell-type inequalities is easily violated with non-entangled and 
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classical states of polarization [8-10].

The full analogy between the Pauli operators and the Stokes polarization measurements should enable the use of 
multi-photon states for the implementation of output correlations because any rotations on the Poincaré sphere involve 
only the state itself rather than the number of photons it carries. Finally, a distinction needs to be drawn between the 
mathematical formalism of quantum mechanics which allows for any assumption to be made, and its implementation 
subject to the physical processes of optical physics in which the field of quantum optics is grounded. The latter will limit 
the range of conclusions that can be inferred from the former. 

Overall, the editorial guidelines of legacy journals, e.g. Physical Review Letters, of rejecting outright and without 
any consideration, well-substantiated rebuttals of quantum non-locality, led to the citation of the 2022 Nobel Prize 
Committee being incomplete and misleading, and its reconsideration will be appropriate, in view of the well-documented 
shortcomings of the Bell inequalities as far back as 1980, e.g., [31].

Appendix A – The Physical Irrelevance of Bell Inequalities 
As pointed out in ref [4]. in typical experiments of correlated outputs, the results of the joint probability 𝑝 (𝑎, 𝑏|𝑥, 𝑦) of 
simultaneous or synchronized detections of two sequential ensembles of binary values, do not equal the product of the 
two separate probabilities of detection 𝑝(𝑎|𝑥) 𝑎𝑛𝑑 𝑝(𝑏|𝑦) at locations A and B for outcome 𝑎 and 𝑏 corresponding to 
local settings 𝑥 and 𝑦, respectively:

𝑝 (𝑎, 𝑏|𝑥, 𝑦) ≠ 𝑝(𝑎|𝑥) 𝑝(𝑏|𝑦)        (A1)

where 𝑎, 𝑏 = 0  𝑜𝑟 1 are assigned binary values for no-detection or detection of an event, respectively. In an attempt to 
explain experimental outcomes obtained with quantum events, it was suggested to convert Eq. (A1) into an equality of 
local factors [4]: 

𝑝𝑓 (𝑎, 𝑏|𝑥, 𝑦; 𝜆) = 𝑝 (𝑎|𝑥; 𝜆) 𝑝 (𝑏|𝑦; 𝜆)  (A2)

by introducing a “hidden” variable 𝜆 whose role would be to create a correlation between the two binary-valued 
sequences with randomly distributed terms of ‘0’s and ‘1’s, for probabilities of detection 𝑝 (𝑎|𝑥; 𝜆) 𝑎𝑛𝑑  𝑝 (𝑏|𝑦; 𝜆). However, 
from a physical perspective, the correlation of simultaneous detections is evaluated from a third sequential distribution 
𝑣𝐶 (𝑎; 𝑏) calculated as the vector or dot product of the two initial sequences 𝑣 (𝑎, 𝑥) = {𝑎𝑚} and 𝑣 (𝑏, 𝑦) = {𝑏𝑚}: 
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𝑁𝑁 ∑ 𝑎𝑎𝑚𝑚

𝑁𝑁

𝑚𝑚=1
 𝑏𝑏𝑚𝑚                                   (A3) 

with the values of the correlation or joint probability   𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦; 𝜆𝜆)  ranging above and below the 
product  𝑝𝑝(𝑎𝑎|𝑥𝑥; 𝜆𝜆) 𝑝𝑝(𝑏𝑏|𝑦𝑦; 𝜆𝜆). For  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦) >  𝑝𝑝(𝑎𝑎|𝑥𝑥) 𝑝𝑝(𝑏𝑏|𝑦𝑦) the arbitrary upper limit of Eq (A2) 
renders any further derivation physically irrelevant as it is intentionally limited in value. However, 
Clauser and Horne instead of correcting this mistake, adopted it and derived two Bell-type inequalities 

[4], [6-7],[11] in the form of functions of probabilities 𝑝𝑝𝑓𝑓(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦) = ∫ 𝑞𝑞(𝜆𝜆) 𝑝𝑝(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦; 𝜆𝜆)Λ  𝑎𝑎𝜆𝜆, with  
𝑞𝑞(𝜆𝜆) being the normalized distribution of hidden variables. Those inequalities can be easily violated 
with classical probabilities  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏|𝑥𝑥,𝑦𝑦)  of Eq (A3) which can be larger than the product of the 
separate probabilities [8-9]. Later on, neither Aspect, nor Zeilinger noticed the statistical problem of 
Eq (A2), with the landmark experiments of [6] and [7] employing strongly non-entangled photons to 
violate the Clauser-Horne inequality. 

The quantum correlation function 𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼;𝛽𝛽) for detecting one photon at location A and its pair-
photon at location B, is defined in terms of four probabilities between two orthonormal detection-
settings at each of the two locations A and B, for eigenvalues  +1 𝑜𝑜𝑜𝑜 − 1, respectively, of local settings 
𝛼𝛼 𝑜𝑜𝑜𝑜 𝛼𝛼′ , and  𝛽𝛽 𝑜𝑜𝑜𝑜 𝛽𝛽′ leading to the linear combination of probabilities 𝑃𝑃𝑖𝑖𝑖𝑖  [3-4]: 

𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼;𝛽𝛽) = 𝑃𝑃++(𝛼𝛼;𝛽𝛽) +  𝑃𝑃−−(𝛼𝛼′;𝛽𝛽′) − 𝑃𝑃+−(𝛼𝛼;𝛽𝛽′) − 𝑃𝑃−+(𝛼𝛼′;𝛽𝛽)                   (𝐴𝐴4) 

where 𝛼𝛼′ = 𝛼𝛼 + 𝜋𝜋/2 and 𝛽𝛽′ = 𝛽𝛽 + 𝜋𝜋/2 . Fluctuations in the number of detections would give rise to 
a spread in the values of 𝑃𝑃𝑖𝑖𝑖𝑖  and  𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼;𝛽𝛽). This correlation function is normally linked to the 
polarimetric Stokes measurements or the quantum Pauli vector operators and has the same form in 
both the quantum and classical regimes [10], so that its use in the Clauser-Horne-Shimony-Holt (CHSH) 
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with the values of the correlation or joint probability 𝑝𝑐 (𝑎, 𝑏|𝑥, 𝑦; 𝜆) ranging above and below the product 𝑝 (𝑎|𝑥; 𝜆) 𝑝
(𝑏|𝑦; 𝜆). For 𝑝𝑐 (𝑎, 𝑏|𝑥, 𝑦) > 𝑝(𝑎|𝑥) 𝑝(𝑏|𝑦) the arbitrary upper limit of Eq (A2) renders any further derivation physically 
irrelevant as it is intentionally limited in value. However, Clauser and Horne instead of correcting this mistake, adopted 
it and derived two Bell-type inequalities in the form of functions of probabilities 𝑝𝑓  (𝑎, 𝑏|𝑥, 𝑦) = ∫Λ 𝑞(𝜆) 𝑝 (𝑎, 𝑏|𝑥, 𝑦; 𝜆) 𝑑 𝜆, 
with 𝑞(𝜆) being the normalized distribution of hidden variables [4, 6, 7, 11]. Those inequalities can be easily violated 
with classical probabilities 𝑝𝑐 (𝑎, 𝑏|𝑥, 𝑦) of Eq (A3) which can be larger than the product of the separate probabilities [8, 
9]. Later on, neither Aspect, nor Zeilinger noticed the statistical problem of Eq (A2), with the landmark experiments of 
employing strongly non-entangled photons to violate the Clauser-Horne inequality [6, 7].

where 𝛼′=𝛼+𝜋/2 and 𝛽′=𝛽+𝜋/2 . Fluctuations in the number of detections would give rise to a spread in the values of 𝑃𝑖𝑗  
and 𝐸 𝑐 (1;1|𝛼;𝛽). This correlation function is normally linked to the polarimetric Stokes measurements or the quantum 
Pauli vector operators and has the same form in both the quantum and classical regimes [10], so that its use in the 
Clauser-Horne-Shimony-Holt (CHSH) inequality cannot discriminate between quantum and classical outcomes. The 
quantum counting is sequential whereas the classical counting consists of only one sampling step.

For the CHSH inequality [11], the correlation probability is 𝑃++ (𝛼;𝛽) = 𝑁++ (𝛼;𝛽)/ 𝑁𝑛𝑜𝑟 𝑚 where 𝑁++ is the number of 
coincident counts of photons and 𝑁𝑛𝑜𝑟 𝑚 is the number of all coincident detections for all four settings 𝑁𝑛𝑜𝑟 𝑚 = 𝑁++ (𝛼;𝛽) + 
𝑁−−(𝛼′;𝛽′) + 𝑁+− (𝛼;𝛽′) + 𝑁−+ (𝛼′;𝛽). However, this normalization is mathematical because the physical number 𝑁𝑛𝑜𝑟 𝑚 = 𝑁𝑖𝑛 of 
initiated photon-pairs is very much larger as photons are lost between the source and the photodetectors, for various 
reasons, thereby throwing doubt about the real statistics. This normalization makes a violation of the CHSC impossible 
as 𝑁++ / 𝑁𝑖𝑛 ≪ 0 .1.
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valued probabilities 𝑝 (1,1;𝛼,𝛽) and similar forms, [6-7], the inequality is written as:
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inequality cannot discriminate between quantum and classical outcomes.  The quantum counting is 
sequential whereas the classical counting consists of only one sampling step.   

For the CHSH inequality [11], the correlation probability is 𝑃𝑃++(𝛼𝛼;𝛽𝛽) = 𝑁𝑁++(𝛼𝛼;𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 
𝑁𝑁++  is the number of coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the number of all coincident 
detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁++(𝛼𝛼;𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′;𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼;𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′;𝛽𝛽) . 
However, this normalization is mathematical because the physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated 
photon-pairs is very much larger as photons are lost between the source and the photodetectors, for 
various reasons, thereby throwing doubt about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings, 
i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued probabilities  𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) and similar forms, 
[6-7], the inequality is written as: 

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) −  𝑝𝑝 (1,1;𝛼𝛼′,  𝛽𝛽′) ≤  𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) + 𝑝𝑝 (0,1;𝛼𝛼′,𝛽𝛽)                                    (𝐴𝐴5) 

with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. But, as only one term of the four 
terms is measured in any given run, the linear combination would relate the maximal values on the 
left-hand side to the minimal values on the right-hand side. With such probabilities for all four terms, 
the opposite requirements of the inequality for the coincident detections of (1;1) on the left-hand side, 
and for only one-location detection (1;0) or (0;1) on the right-hand side, make a violation impossible, 
mathematically, unless arbitrary values are selected from various data sets. In this case, the inequality 
becomes physically meaningless. 

Appendix B - Linking projective measurements to the theoretical correlation function of 
independent photons 

Quantum correlations are evaluated as the expectation values of a product of operators [3-4]. For 
the projective operators  𝛱𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 𝛱𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|   corresponding to the 
polarization filters with one detection setting at each of the two locations A and B, respectively, the 
probability of coincident detections has the form, cf. [4, Eq 13]: 

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (𝛱𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)| = |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (𝐵𝐵1) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization filters, and ⟨Φ𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the 
Hermitian conjugate state.  For the polarization-entangled photons, the outcomes consist of the 
overlap between two state vectors rotated on the Poincaré sphere and are defined as the correlation 
function 𝐶𝐶(𝛼𝛼;𝛽𝛽)  between two (mixed) states; by contrast, experimentally, the probability of 
coincident detections is calculated from the sum of products of overlapping terms, i.e.,  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) =
(∑ 𝑎𝑎𝑛𝑛𝑁𝑁

𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁  , as defined in the Introduction, and identifies the fraction of simultaneous 
detections at the level of each quantum event. This discrepancy is part of the disconnect between 
theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩  of the shared measurement Hilbert space, the projective 
amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 , ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑎𝑎 𝛼𝛼 ,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽  and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑐𝑐𝑠𝑠𝑎𝑎 𝛽𝛽 . The 
correlation function  𝐶𝐶(𝛼𝛼;𝛽𝛽)  of magnitude |𝐶𝐶(𝛼𝛼;𝛽𝛽)| =  𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽)  between filter polarization 
states and for independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes: 

𝐶𝐶(𝛼𝛼;𝛽𝛽) = ⟨Φ𝛼𝛼|Φ𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩                                                        (𝐵𝐵2) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  +  |𝑉𝑉⟩ )/ √2                                                                                                   (𝐵𝐵3) 18 
 

inequality cannot discriminate between quantum and classical outcomes.  The quantum counting is 
sequential whereas the classical counting consists of only one sampling step.   

For the CHSH inequality [11], the correlation probability is 𝑃𝑃++(𝛼𝛼;𝛽𝛽) = 𝑁𝑁++(𝛼𝛼;𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 
𝑁𝑁++  is the number of coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the number of all coincident 
detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁++(𝛼𝛼;𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′;𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼;𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′;𝛽𝛽) . 
However, this normalization is mathematical because the physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated 
photon-pairs is very much larger as photons are lost between the source and the photodetectors, for 
various reasons, thereby throwing doubt about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings, 
i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued probabilities  𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) and similar forms, 
[6-7], the inequality is written as: 

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) −  𝑝𝑝 (1,1;𝛼𝛼′,  𝛽𝛽′) ≤  𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) + 𝑝𝑝 (0,1;𝛼𝛼′,𝛽𝛽)                                    (𝐴𝐴5) 

with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. But, as only one term of the four 
terms is measured in any given run, the linear combination would relate the maximal values on the 
left-hand side to the minimal values on the right-hand side. With such probabilities for all four terms, 
the opposite requirements of the inequality for the coincident detections of (1;1) on the left-hand side, 
and for only one-location detection (1;0) or (0;1) on the right-hand side, make a violation impossible, 
mathematically, unless arbitrary values are selected from various data sets. In this case, the inequality 
becomes physically meaningless. 

Appendix B - Linking projective measurements to the theoretical correlation function of 
independent photons 

Quantum correlations are evaluated as the expectation values of a product of operators [3-4]. For 
the projective operators  𝛱𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 𝛱𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|   corresponding to the 
polarization filters with one detection setting at each of the two locations A and B, respectively, the 
probability of coincident detections has the form, cf. [4, Eq 13]: 

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (𝛱𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)| = |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (𝐵𝐵1) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization filters, and ⟨Φ𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the 
Hermitian conjugate state.  For the polarization-entangled photons, the outcomes consist of the 
overlap between two state vectors rotated on the Poincaré sphere and are defined as the correlation 
function 𝐶𝐶(𝛼𝛼;𝛽𝛽)  between two (mixed) states; by contrast, experimentally, the probability of 
coincident detections is calculated from the sum of products of overlapping terms, i.e.,  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) =
(∑ 𝑎𝑎𝑛𝑛𝑁𝑁

𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁  , as defined in the Introduction, and identifies the fraction of simultaneous 
detections at the level of each quantum event. This discrepancy is part of the disconnect between 
theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩  of the shared measurement Hilbert space, the projective 
amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 , ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑎𝑎 𝛼𝛼 ,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽  and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑐𝑐𝑠𝑠𝑎𝑎 𝛽𝛽 . The 
correlation function  𝐶𝐶(𝛼𝛼;𝛽𝛽)  of magnitude |𝐶𝐶(𝛼𝛼;𝛽𝛽)| =  𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽)  between filter polarization 
states and for independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes: 

𝐶𝐶(𝛼𝛼;𝛽𝛽) = ⟨Φ𝛼𝛼|Φ𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩                                                        (𝐵𝐵2) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  +  |𝑉𝑉⟩ )/ √2                                                                                                   (𝐵𝐵3) 18 
 

inequality cannot discriminate between quantum and classical outcomes.  The quantum counting is 
sequential whereas the classical counting consists of only one sampling step.   

For the CHSH inequality [11], the correlation probability is 𝑃𝑃++(𝛼𝛼;𝛽𝛽) = 𝑁𝑁++(𝛼𝛼;𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 
𝑁𝑁++  is the number of coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the number of all coincident 
detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁++(𝛼𝛼;𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′;𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼;𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′;𝛽𝛽) . 
However, this normalization is mathematical because the physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated 
photon-pairs is very much larger as photons are lost between the source and the photodetectors, for 
various reasons, thereby throwing doubt about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings, 
i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued probabilities  𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) and similar forms, 
[6-7], the inequality is written as: 

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) −  𝑝𝑝 (1,1;𝛼𝛼′,  𝛽𝛽′) ≤  𝑝𝑝 (1, 0;𝛼𝛼,  𝛽𝛽′) + 𝑝𝑝 (0,1;𝛼𝛼′,𝛽𝛽)                                    (𝐴𝐴5) 

with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. But, as only one term of the four 
terms is measured in any given run, the linear combination would relate the maximal values on the 
left-hand side to the minimal values on the right-hand side. With such probabilities for all four terms, 
the opposite requirements of the inequality for the coincident detections of (1;1) on the left-hand side, 
and for only one-location detection (1;0) or (0;1) on the right-hand side, make a violation impossible, 
mathematically, unless arbitrary values are selected from various data sets. In this case, the inequality 
becomes physically meaningless. 

Appendix B - Linking projective measurements to the theoretical correlation function of 
independent photons 

Quantum correlations are evaluated as the expectation values of a product of operators [3-4]. For 
the projective operators  𝛱𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 𝛱𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|   corresponding to the 
polarization filters with one detection setting at each of the two locations A and B, respectively, the 
probability of coincident detections has the form, cf. [4, Eq 13]: 

𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (𝛱𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)| = |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (𝐵𝐵1) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization filters, and ⟨Φ𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the 
Hermitian conjugate state.  For the polarization-entangled photons, the outcomes consist of the 
overlap between two state vectors rotated on the Poincaré sphere and are defined as the correlation 
function 𝐶𝐶(𝛼𝛼;𝛽𝛽)  between two (mixed) states; by contrast, experimentally, the probability of 
coincident detections is calculated from the sum of products of overlapping terms, i.e.,  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) =
(∑ 𝑎𝑎𝑛𝑛𝑁𝑁

𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁  , as defined in the Introduction, and identifies the fraction of simultaneous 
detections at the level of each quantum event. This discrepancy is part of the disconnect between 
theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩  of the shared measurement Hilbert space, the projective 
amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 , ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑎𝑎 𝛼𝛼 ,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽  and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑐𝑐𝑠𝑠𝑎𝑎 𝛽𝛽 . The 
correlation function  𝐶𝐶(𝛼𝛼;𝛽𝛽)  of magnitude |𝐶𝐶(𝛼𝛼;𝛽𝛽)| =  𝑝𝑝 (1,1;𝛼𝛼,𝛽𝛽)  between filter polarization 
states and for independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes: 

𝐶𝐶(𝛼𝛼;𝛽𝛽) = ⟨Φ𝛼𝛼|Φ𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩                                                        (𝐵𝐵2) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  +  |𝑉𝑉⟩ )/ √2                                                                                                   (𝐵𝐵3) 

with the normalization factor 𝑁𝑖𝑛 of initiated events being used. But, as only one term of the four terms is measured 
in any given run, the linear combination would relate the maximal values on the left-hand side to the minimal values 
on the right-hand side. With such probabilities for all four terms, the opposite requirements of the inequality for the 
coincident detections of (1;1) on the left-hand side, and for only one-location detection (1;0) or (0;1) on the right-hand 
side, make a violation impossible, mathematically, unless arbitrary values are selected from various data sets. In this 
case, the inequality becomes physically meaningless.

Appendix B - Linking projective measurements to the theoretical correlation 
function of independent photons
Quantum correlations are evaluated as the expectation values of a product of operators [3-4]. For the projective 
operators 𝛱(𝛼)=|𝐻𝛼⟩ ⟨𝐻𝛼| 𝑎𝑛𝑑 𝛱(𝛽)=|𝐻𝛽⟩ ⟨𝐻𝛽| corresponding to the polarization filters with one detection setting at each 
of the two locations A and B, respectively, the probability of coincident detections has the form, cf. [4, Eq 13]:

̂ ̂

with |𝐻𝛼⟩ and |𝐻𝛽⟩ identifying the states of the polarization filters, and ⟨Φ𝛼|=⟨𝜓𝑖𝑛|𝛱(𝛼) for the Hermitian conjugate 
state. For the polarization-entangled photons, the outcomes consist of the overlap between two state vectors rotated 
on the Poincaré sphere and are defined as the correlation function 𝐶(𝛼;𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is calculated from the sum of products of overlapping terms, i.e., 
𝑝𝑐 (𝑎,𝑏) = (Σ𝑁

𝑚=1 𝑎𝑚 b𝑚) / N, as defined in the Introduction, and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the disconnect between theory and measurement.

For the basis states |𝐻⟩ 𝑎𝑛𝑑 |𝑉⟩ of the shared measurement Hilbert space, the projective amplitudes are ⟨𝐻𝛼|𝐻𝐴⟩ = 𝑐𝑜𝑠
𝛼, ⟨𝐻𝛼|𝑉𝐴⟩ = 𝑠𝑖𝑛 𝛼, ⟨𝐻𝛽|𝐻𝐵⟩ = 𝑐𝑜𝑠 𝛽 and ⟨𝐻𝛽|𝑉𝐵⟩ = 𝑠𝑖𝑛 𝛽. The correlation function 𝐶(𝛼;𝛽) of magnitude |𝐶 (𝛼;𝛽)| = 𝑝 (1,1;𝛼,𝛽) 
between filter polarization states and for independent states of photons |𝜓𝑖𝑛⟩ becomes:

̂
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|𝐻𝐻𝛼𝛼⟩ = cos𝛼𝛼 |𝐻𝐻⟩  + sin𝛼𝛼  |𝑉𝑉⟩    ;    |𝐻𝐻𝛽𝛽⟩ = cos𝛽𝛽 |𝐻𝐻⟩  + sin𝛽𝛽  |𝑉𝑉⟩                             (𝐵𝐵4) 

𝐶𝐶(𝛼𝛼;𝛽𝛽) =  0.5[𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼+ sin 𝛼𝛼] [𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼 − 𝛽𝛽)] [cos 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽] =                                           

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]                                                (𝐵𝐵5) 

This correlation of Eq (B5) is composed of three terms. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine functions, while the term 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼 − 𝛽𝛽)  
indicates the overlap between the two filters. The magnitude of this correlation function or probability 
of coincident detections can reach a peak of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑐𝑐𝑜𝑜 𝜋𝜋/4 ±
𝜋𝜋  , outperforming the coincidence values of 0.5 obtained with entangled states of photons as 
presented in Section 2.1. 

The possibility of achieving strong correlations with independent photons has, once again, been 
demonstrated experimentally recently [8-9]. 

References: 

[1] E. Gent, “Quantum Computing’s Hard, Cold Reality Check: Hype is everywhere, skeptics say, and practical  
applications are still far away”; IEEE Spectrum, 22 Dec., (2023) https://spectrum.ieee.org/quantum-
computing-skeptics 

[2]   M. Brooks, “The race to find quantum computing’s soft spot”, Nature, Vol 617, 25 May 2023, pp. S1-S3. 
[3] C. Garrison and R.Y. Chiao, Quantum Optics, Oxford University Press, 2008. 
[4] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, ”Bell nonlocality,” Rev. Mod. Phys. 86, 419–

478 (2014). 
[5] A. Aspect, “Closing the Door on Einstein and Bohr’s Quantum Debate,” Physics 8, 123, 2015. 
[6] M. Giustina, et al., ‘‘Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons,’’ Phys. Rev. 

Lett. 115, 250401 (2015). 
[7] L. K. Shalm et al.,  ‘‘Strong Loophole-Free Test of Local Realism,’’ Phys. Rev. Lett. 115, 250402 (2015). 
[8] M. Iannuzzi, R. Francini, R. Messi, and D. Moricciani,” Bell-type Polarization Experiment With Pairs Of 

Uncorrelated Optical Photons”, Phys. Lett. A, 384 (9), 126200, (2020). 
[9] A. Ivashkin, D. Abdurashitov, Al. Baranov, F.Guber, S. Morozov, S. Musin, A. Strizhak and I.Tkachev, “Testing 

entanglement of annihilation photons”, Sci. Rep. 13:7559 (2023). https://doi.org/10.1038/s41598-023-
34767-8 

[10] A. Vatarescu, “Polarimetric Quantum-Strong Correlations with Independent Photons on the Poincaré Sphere,” 
Quantum Beam Sci., 6, 32 (2022). 

[11] R. Ursin et al., “Entanglement-based quantum communication over 144 km, Nature Phys., 3, pp.481-6, 
2007. 

[12] A. P. Vinogradov, V. Y. Shishkov, I. V. Doronin, E. S. Andrianov, A. A. Pukhov, and A. A. Lisyansky, 
“Quantum theory of Rayleigh scattering,” Opt. Express 29 (2), 2501-2520 (2021). 

[13] A. Vatarescu, “The Scattering and Disappearance of Entangled Photons in   a Homogeneous Dielectric Medium,”     
Rochester Conference on Coherence and Quantum Optics (CQO-11), (2019). doi.org/10.1364/CQO.2019.M5A.19. 

[14] A. Vatarescu, “The Quantum Regime Operation of Beam Splitters and Interference Filters”, Quantum 
Beam Sci. 2023, 7, 11. 

[15] A. Vatarescu, “Instantaneous Quantum Description of Photonic Wavefronts and Applications”, Quantum 
Beam Sci. 2022, 6, 29. 

[16] F. J. Tipler, "Quantum nonlocality does not exist,” PNAS 111 (31), 11281-11286, (2014).  
[17] T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. 

Phys. B 77, 797–802 (2003). 
[18] A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography," Rev. Mod. Phys., 

81, 299-332, (2009). 
[19] W. H. Louisell, Quantum Statistical Properties of Radiation; John Wiley & Sons: Hoboken, NJ, USA, 1973. 
[20] D. Marcuse, Principles of Quantum Electronics; Academic Press: Cambridge, MA, USA, 1980. 
[21] R. B. Griffiths, “Nonlocality claims are inconsistent with Hilbert-space quantum mechanics”, Phys. Rev. A 101, 

022117 (2020). 

This correlation of Eq (B5) is composed of three terms. The projections of the input states onto the respective filters 
are given by the sum of the sine and cosine functions, while the term 𝑐𝑜𝑠 (𝛼 − 𝛽) indicates the overlap between the two 
filters. The magnitude of this correlation function or probability of coincident detections can reach a peak of unity for the 
symmetric case of 𝛼 = 𝛽 = 𝜋/4  𝑜𝑟  𝜋/4  ± 𝜋, outperforming the coincidence values of 0.5 obtained with entangled states 
of photons as presented in Section 2.1. The possibility of achieving strong correlations with independent photons has, 
once again, been demonstrated experimentally recently [8, 9].

References
1. Ghent, E. (2023). Quantum Computing’s Hard, Cold Reality Check: Hype is everywhere, skeptics say, and practical 

applications are still far away. IEEE Spectrum, 22.
2. Brooks, M. (2023). The race to find quantum computing's sweet spot. Nature, 617(7962), S1-S3.
3. GARRISON, J., & CHIAO, R. Quantum Optics. [Sl]: Oxford University Press, 2008. Citado na, 23.
4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., & Wehner, S. (2014). Bell nonlocality. Reviews of modern physics, 

86(2), 419-478.
5. Aspect, A. (2015). Closing the door on Einstein and Bohr’s quantum debate. Physics, 8, 123.
6. Giustina, M., Versteegh, M. A., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., ... & Zeilinger, A. (2015). 

Significant-loophole-free test of Bell’s theorem with entangled photons. Physical review letters, 115(25), 250401.
7. Shalm, L. K., Meyer-Scott, E., Christensen, B. G., Bierhorst, P., Wayne, M. A., Stevens, M. J., ... & Nam, S. W. (2015). 

https://www.primeopenaccess.com/international-journals/international-journal-of-quantum-technologies.asp


Int J Quantum Technol, 2025 15

Strong loophole-free test of local realism. Physical review letters, 115(25), 250402.
8. Iannuzzi, M., Francini, R., Messi, R., & Moricciani, D. (2020). Bell-type polarization experiment with pairs of 

uncorrelated optical photons. Physics Letters A, 384(9), 126200.
9. Ivashkin, A., Abdurashitov, D., Baranov, A., Guber, F., Morozov, S., Musin, S., ... & Tkachev, I. (2023). Testing 

entanglement of annihilation photons. Scientific Reports, 13(1), 7559.
10. Vatarescu, A. (2022). Polarimetric quantum-strong correlations with independent photons on the Poincaré sphere. 

Quantum Beam Science, 6(4), 32.
11. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., ... & Zeilinger, A. (2007). 

Entanglement-based quantum communication over 144 km. Nature physics, 3(7), 481-486.
12. Vinogradov, A. P., Shishkov, V. Y., Doronin, I. V., Andrianov, E. S., Pukhov, A. A., & Lisyansky, A. A. (2021). Quantum 

theory of Rayleigh scattering. Optics Express, 29(2), 2501-2520.
13. Vatarescu, A. (2019, August). The Scattering and Disappearance of Entangled Photons in a Homogeneous Dielectric 

Medium. In Conference on Coherence and Quantum Optics (pp. M5A-19). Optica Publishing Group.
14. Vatarescu, A. (2023). The Quantum Regime Operation of Beam Splitters and Interference Filters. Quantum Beam 

Science, 7(2), 11.
15. Vatarescu, A. (2022). Instantaneous quantum description of photonic wavefronts and applications. Quantum Beam 

Science, 6(4), 29.
16. Tipler, F. J. (2014). Quantum nonlocality does not exist. Proceedings of the National Academy of Sciences, 111(31), 

11281-11286.
17. Legero, T., Wilk, T., Kuhn, A., & Rempe, G. (2003). Time-resolved two-photon quantum interference. Applied Physics 

B, 77, 797-802.
18. Lvovsky, A. I., & Raymer, M. G. (2009). Continuous-variable optical quantum-state tomography. Reviews of modern 

physics, 81(1), 299-332.
19. Louisell, W. H. (1990). Quantum Statistical Properties of Radiation, ed. by John Wiley Sons. 
20. D. Marcuse, Principles of Quantum Electronics; Academic Press: Cambridge, MA, USA, 1980.
21. Griffiths, R. B. (2020). Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. Physical Review 

A, 101(2), 022117.
22. Tipler, F. J. (2014). Quantum nonlocality does not exist. Proceedings of the National Academy of Sciences, 111(31), 

11281-11286.
23. Hess, K. (2021). What Do Bell-Tests Prove? A Detailed Critique of Clauser-Horne-Shimony-Holt Including 

Counterexamples. Journal of Modern Physics, 12(9), 1219-1236.
24. Boughn, S. (2017). Making sense of Bell’s theorem and quantum nonlocality. Foundations of Physics, 47(5), 640-

657.
25. Khrennikov, A. (2019). Get rid of nonlocality from quantum physics. Entropy, 21(8), 806.
26. Kupczynski, M. (2018). Closing the door on quantum nonlocality. Entropy, 20(11), 877.
27. Zhang, W., van Leent, T., Redeker, K., Garthoff, R., Schwonnek, R., Fertig, F., ... & Weinfurter, H. (2022). A device-

independent quantum key distribution system for distant users. Nature, 607(7920), 687-691.
28. Gordon, J. P., & Kogelnik, H. (2000). PMD fundamentals: Polarization mode dispersion in optical fibers. Proceedings 

of the National Academy of Sciences, 97(9), 4541-4550.
29. Vaidman, L. (2019). Quantum nonlocality. Entropy, 21(5), 447.
30. ScienceDaily, Quantum-nonlocality at all speeds, Date: June 16, 2021. 
31. Kracklauer, A. F. (2017). Bell’s “Theorem”: Loopholes vs. conceptual flaws. Open Physics, 15(1), 754-761. 

https://www.primeopenaccess.com/international-journals/international-journal-of-quantum-technologies.asp

