Nanomedicine and Nanoscience Technology: Open Access

Editorial - (2022) Volume 2, Issue 4

Interpretation, Creation and Spot Checking Hadron Curve in Cancer Treatment

Alireza Heidari1,2,3,4*
 
1California South University, 14731 Comet St. Irvine, CA 92604, USA
2BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
3Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
4American International Standards Institute, Irvine, CA 3800, USA
 
*Correspondence: Faculty of Chemistry. Alireza Heidari, California South University, 14731 Comet St. Irvine, CA 92604, USA

Received Date: Aug 02, 2022 / Accepted Date: Oct 07, 2022 / Published Date: Oct 13, 2022

Abstract

To create and (sort out the value, sum, or nature of) spot-checking hadron curve (SHArc) treatment, the principal circular segment conveyance approach to getting things done for both light and weighty particles, in various medication-based pictures/situations.

Keywords

Radiotherapy, Cancer, Treatment, Cure, Hadrontherapy, Tumors, Oncology, Particle Therapy

Editorial

To create and (sort out the value, sum, or nature of) spot-checking hadron curve (SHArc) treatment, the principal circular segment conveyance approach to getting things done for both light and weighty particles, in various medication-based pictures/situations. Robust treatment arranging and (connected with the body capability of living things) streamlining techniques were created inside a GPU-speeded up portion motor and treatment arranging framework, starting and expanding on a devoted energy/spot/point determination rules of direct areas of strength for solid SHArc conveyance. Beginning tests were (did/done/finished) for three medication based molecule (lines of light) (protons, helium, and carbon particles) on water-equivalent cylinder like phantoms for straightforward targets and medication based-like pictures/circumstances with an organ in danger (OAR) close of the objective to look at SHArc against reference conventional approaches to doing things utilizing single and multi-field arrangements. SHArc patient medicines were overviewed in better places/areas (head, H&N, chest and hip-related region). Dosimetric and (connected with the body capability of living things) highlights were determined and (sorted out the value, sum, or nature of) applying the changed microdosimetric (development related) model. To choose/sort out hit/impact of LET contrasts/various renditions inside the growth volume, a model for hypoxia-caused radio-opposition was created and applied for molecule treatment to (pose loads of inquiries about/attempt to track down reality with regards to) hit/impact on compelling dose. SHArc plans showed practically a similar objective inclusion with (like nothing else on the planet) treatment credits and dispersions contrasted with standard preparation, with carbon particles (joining others in broad daylight to show serious areas of strength for an about something) the best (plausibility of/conceivable occurring of) cancer control and (normal/generally and customary/sound) tissue saving among the circular segment approaches to getting things done. All SHArc plans showed a low-portion shower outside the objective sum/amount with a decreased greatest portion in (normal/generally and customary/sound) tissues contrasted with single and multi-field plans. More than that, great/supportive LET appropriations were conceivable with the SHArc approach with enormous expansions in LETmax and volume containing high-LET parts/pieces. More than that, decreases of high-LET regions in (normal/generally and ordinary/sound) tissues and OARs were watched/followed contrasted with static treatment bar delivery. The first circular segment treatment conveyance approach to doing things utilizing helium and carbon particle radiates is proposed. (event(s) or object(s) that demonstrate something) implies that through bend conveyance of high-LET molecule radiates, SHArc treatment might offer (in a way not at all like anything more) important medication-based benefits both dosimetrically and (connected with the body capability of living things). Solid and sound SHArc medicines might actually further develop cancer control by beating growth (separate climate in a little region) obstruction factors, for example, hypoxia caused radio-opposition, and decrease noxious quality in basic designs by (making something as little as could be expected/treating something significant as immaterial) high-LET parts/pieces [1-30].

Acknowledgement

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory (BCRL) Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

  1. Heidari A, Brown C. Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells. J Nanomed Res. 2015; 2(5)20:2015.
  2. Heidari A, Brown C. Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles. Int J Pharmacol Phytoche Ethnomed. 2015:1(1):15-19.
  3. Heidari A. An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Semen Quality for Evaluation of Male Infertility. Int J Adv Technol. 2016;7: e007.
  4. Heidari A. Extraction and Preconcentration of N-Tolyl-Sulfonyl-Phosphoramid-Saeure-Dichlorid as an Anti-Cancer Drug from Plants: A Pharmacognosy Study. J Pharmacogn Nat Prod. 2016;2: e103.
  5. Heidari A. A Thermodynamic Study on Hydration and Dehydration of DNA and RNA-Amphiphile Complexes. J Bioeng Biomed Sci. 2016;S:006.
  6. Heidari A. Computational Studies on Molecular Structures and Carbonyl and Ketene Groups’ Effects of Singlet and Triplet Energies of Azidoketene O=C=CH–NNN and Isocyanatoketene O=C=CH–N=C=O. J Appl Computat Math.2016;5:e142.
  7. Heidari A. Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR–FTIR, Raman and 1HNMR Spectroscopies. J Biomol Res Ther. 2016;5:e146.
  8. Heidari A. Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells. J Bioanal Biomed. 2016;8: e135.
  9. Heidari A. A Bio-Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells. Adv Cancer Prev. 2016;1: e102.
  10. Heidari A Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles. J Biotechnol Biomater.2016;6: e125.
  11. Heidari A. A Novel Experimental and Computational Approach to Photobiosimulation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study. J Res Development 2016;4:144.
  12. Heidari A. Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oritavancin, Telavancin and Dalbavancin Binding. Biochem Physiol. 2016;5:e146.
  13. Heidari A. Anti-Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study. Arch Cancer Res. 2016;4:1.
  14. Heidari A. Biospectroscopic Study on Multi–Component Reactions (MCRs) in Two A–Type and B–Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti–Cancer Drugs. Arch Cancer Res. 2016;4:2.
  15. Heidari A.Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time–Dependent Bio–Heat Equation and Nd: YAG Lasers. Arch Cancer Res. 2016;4:2.
  16. Heidari A. Quantitative Structure–Activity Relationship (QSAR)Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Multiple Linear and Non-Linear Correlation Approach. Ann Clin Lab Res. 2016;4:1.
  17. Heidari A. Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles. J Biomedical Sci. 2016;5:2.
  18. Heidari A. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 2016;7:292.
  19. Heidari A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 2016;7: e112.
  20. Heidari A. Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques. J Drug Metab Toxicol. 2016;7: e129.
  21. Heidari A. Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti–Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment. Biochem Pharmacol (Los Angel) 2016;5: 207.
  22. Heidari A. A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) as Hydrogen Storage. Struct Chem Crystallogr Commun 2016;2.
  23. Heidari A. Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti–Cancer Drug and Its Effect on Human Cancer Cells. Pharm Anal Chem Open Access. 2016;2:113.
  24. Heidari A. A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double–Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chemo Open Access. 2016;5: e129.
  25. Heidari A. Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications. J Pharmacokinet Exp Ther. 2016;1:e005.
  26. Heidari A. Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques. Insights Anal Electrochem 2016;2:1.
  27. Heidari A. Discriminate between Antibacterial and Non–Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 2016;1: 2.
  28. Heidari A. Combined Theoretical and Computational Study of the Belousov–Zhabotinsky Chaotic Reaction and Curtius Rearrangement for Synthesis of Mechlorethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti–Cancer Drugs. Insights Med Phys. 2016;1:2.
  29. Heidari A. A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study. Transl Biomed. 2016;7:2.
  30. Heidari A. Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells. J Nanomedine Biotherapeutic Discov 2016;6: e144.

Citation: Alireza Heidari. Interpretation, Creation and Spot-Checking Hadron Curve in Cancer Treatment. Nanomed Nanosci Technol: Open Access 2022;2(4):1-4.

Copyright: © 2024 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.